Sample Variational Methods Problem

Joey Peter
SR No: 5510-511-051-03929
Supercomputer Education Research Center

June 29, 2006

1 Introduction

Minimal Time Orbital Transfer

Given a constant thrust (T) rocket engine, find the thrust direction history $\phi(\mathrm{t})$ to transfer the space vehicle from a given initial circular orbit to a final circular orbit.

2 Free Body Diagram

The following figure depicts the problem. The dot represents the space vehicle.

Figure 1: Free body diagram of a space vehicle

3 Symbols

u : Radial component of the velocity
v : Tangential component of the velocity
m : Mass of the vehicle
μ : Gravitational constant of attracting center
r : Radial distance of space vehicle from the attracting center
ϕ : Thrust deflection angle.

4 System Dynamics

$$
\begin{align*}
\frac{d r}{d t} & =u \tag{1}\\
\frac{d u}{d t} & =\frac{v^{2}}{r}-\frac{\mu}{r^{2}}+\frac{T \sin \phi}{m} \tag{2}\\
\frac{d v}{d t} & =-\frac{u v}{r}+\frac{T \cos \phi}{m} \tag{3}
\end{align*}
$$

The functional to be minimised is:

$$
J=\int_{t_{0}}^{t_{f}} d t
$$

Since the final time is not fixed, the problem needs to be reformulated with 'r' instead to ' t ' as the independent variable. Then the new functional would be:

$$
J=\int_{t_{0}}^{t_{f}} \frac{d t}{d r} d r
$$

Substituting $\frac{d r}{d t}$ from equation (1), we get:

$$
J=\int_{r_{0}}^{r_{f}} \frac{1}{u} d r
$$

Reformulating the differential equations of motion with 'r' as the independent variable, we get:

$$
\begin{align*}
\frac{d u}{d r} & =\frac{1}{u}\left(\frac{v^{2}}{r}-\frac{\mu}{r^{2}}+\frac{T \sin \phi}{m}\right) \tag{4}\\
\frac{d v}{d r} & =\frac{1}{u}\left(-\frac{u v}{r}+\frac{T \cos \phi}{m}\right) \tag{5}
\end{align*}
$$

The augmented functional is given by:

$$
J=\int_{r_{0}}^{r_{f}}\left(\frac{1}{u}+\lambda_{u}\left(\frac{1}{u}\left(\frac{v^{2}}{r}-\frac{\mu}{r^{2}}+\frac{T \sin \phi}{m}-\frac{d u}{d r}\right)\right)+\lambda_{v}\left(\frac{1}{u}\left(-\frac{u v}{r}+\frac{T \cos \phi}{m}\right)\right)-\frac{d v}{d r}\right)
$$

5 Euler Lagrange Equations

$\delta_{u}=0 \Rightarrow$

$$
\begin{equation*}
1+\lambda_{u}\left(\frac{v^{2}}{r}-\frac{\mu}{r^{2}}+\frac{T \sin \phi}{m}\right)+\lambda_{v}\left(\frac{T \cos \phi}{m}\right)-u^{2} \frac{d \lambda_{u}}{d r}=0 \tag{6}
\end{equation*}
$$

$\delta_{v}=0 \Rightarrow$

$$
\begin{equation*}
2 \lambda_{u} v-u \lambda_{v}+u r \frac{d \lambda_{v}}{d r}=0 \tag{7}
\end{equation*}
$$

$\delta_{\phi}=0 \Rightarrow$

$$
\begin{equation*}
\tan \phi=\frac{\lambda_{u}}{\lambda_{v}} \tag{8}
\end{equation*}
$$

6 Update Formula

1. Assume a control history ϕ.
2. Use governing equations (4) and (5) to solve for u and v.
3. Use relations (6) and (7) to solve for λ_{u} and λ_{v}.
4. Use relation (8) to solve for control history.
5. Go to step 2 and repeat till convergence.

Classmates Note: Kindly let me know if you disagree with any of the results shown here. All the best

