POTENTIAL EXAM PROBLEM

Phani Sudheer Motamarri

28 June 2006

In the Class assignment, we discussed the optimisation(stiff truss) of truss structure from the ground truss such that areas of each truss is a design variable...Did you ever think what if the nodal positions themselves are variables. To simplify the problem let us take a triangular truss which is fixed at two of its base nodes and position of third node can be variable. So formulate the problem in such a way so as to find the optimum position of the third node so that the resulting structure is stiff. Assume load acting on the third variable node is P and acting at an angle θ to the horizontal. Also assume that third node always is on the straight line at a height h from the horizontal. Details are as follows:

- Distance between the two node points is l_3
- Distance from the basal line to the vertex is \boldsymbol{h}
- Length of one bar cannot exceed 1.5 times l_3

May be also you can try out the direction of the load to act to find the optimum truss configuration