Mid-term Examination

Marks: 30 Open notes but closed books Time: 90 minutes

Question 1 (5 marks)

Consider $J = \int_{x_1}^{x_2} F(x, y, y', y'', \dots, y^{n^{th}}) dx$ and f(x). What possible terms can you add to the integrand of J using f(x) and y(x) and their derivatives so that the new functional and J would have the

same Euler-Lagrange extremizing differential equation as the extremizing solution?

Question 2 (5 marks)

What functional, when optimized, would lead to the Poisson's equation: $\nabla^2 z(x, y) = g(x, y)$? Please also write the boundary condition that arises when such a functional is extremized.

Question 3 (3+4+1+2 = 10 marks)

It is desired that an axially loaded <u>fixed-free</u> bar's cross-section area, A(x), be designed with a given volume of material, V^* , such that the overall stiffness and the displacement at a particular point, $x = \hat{x}$, are both maximized.

(a) Justify that the following problem statement meets the above requirements and explain what the symbols in the problem statement stand for.

Minimize
$$J = \int_{0}^{L} \frac{P^{2}}{2EA} dx$$

$$\int_{0}^{L} \frac{Pq}{EA} dx$$

Subject to

$$\int_0^L A dx - V^* \le 0$$

Data: $E = \text{Young's modulus}, f(x) = \text{axial load}, L = \text{length}, V^*$

- (b) Write down the Euler-Lagrange necessary conditions for this problem (You need not write the boundary conditions).
- (c) How do you justify that the volume constraint must be active/inactive?
- (d) Determine the expressions for the optimal A(x) and the Lagrange multiplier corresponding to the constraint.

Question 4 (10 marks)

Write down the extremizing differential equation <u>and</u> the boundary conditions for the following functional if the end points of y(x) lie on curves $\phi_1(x)$ and $\phi_2(x)$.

$$J = \left\{ \int_{x_1}^{x_2} F(x, y, y') dx \right\} + \psi(x_1, y_1, x_2, y_2)$$

Note that $y_1 = y_{x=x_1}$ and $y_2 = y_{x=x_2}$.