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Solution to Mid-term Examination 
Marks: 30   Open notes but closed books       Time: 90 minutes 

 
Question 1 (5  marks) 

Consider 
2

1

( , , , , , )
th

x
n

x

J F x y y y y dx′′ ′′= ∫  and ( )f x . What possible terms can you add to the integrand 

of J  using ( )f x  and ( )y x  and their derivatives so that the new functional and J  would have the 
same Euler-Lagrange extremizing differential equation as the extremizing solution? 
 
Clearly, adding , , , ,

thny y y y ′′ ′′ ′′′  individually or as a product with a constant does not contribute 

any new terms to the E-L equation of the functional: 2

1

( , , , , , , )
thx n

x
J F x y y y y y dx′′ ′′ ′′′= ∫ .  

 
Likewise, , , , ,

thnf f f f ′′ ′′  behave the same way. 
 
Furthermore, consider f y y f′ ′+ . Its terms in the E-L equation will be 
( ) ( )

0
f y y f f y y fd f f

y dx y
′ ′ ′ ′⎛ ⎞∂ + ∂ +

′ ′− = − =⎜ ⎟⎜ ⎟′∂ ∂⎝ ⎠
. So, it too does not add any new terms to the E-L 

equation. 
 
Similarly, th thn nf y y f′ ′+  would also not add any new terms. 
 
Question 2 (5  marks) 
What functional, when optimized, would lead to the Poisson’s equation: 2 ( , ) ( , )z x y g x y∇ = ? Please 
also write the boundary condition that arises when such a functional is extremized. 
 

2 2
2

2 2( , ) ( , ) ( , ) 0z zz x y g x y g x y
x y
∂ ∂

∇ − = + − =
∂ ∂

 

Since for a functional of the form ( )2 2

1 1

, , ( , ), ,
x y

x yx y
J F x y z x y z z dx dy= ∫ ∫ , the E-L equation is: 

0
x y

F z z
z dx z dy z

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂
− − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

, it can be seen that the terms in the Poisson’s equation arise from 

( ) ( )
22

221 1 1 1( , ) ( , )
2 2 2 2x y

z zF g x y z z z g x y z
x y

⎛ ⎞∂ ∂⎛ ⎞= + + = + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
. 

 
The general form of the boundary condition for ( )2 2

1 1

, , ( , ), ,
x y

x yx y
J F x y z x y z z dx dy= ∫ ∫  is: 

 

0 where the boundary of the domain
x y

F Fdy dx z
z z

δ
Γ

⎛ ⎞∂ ∂
− = Γ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫ . This in this case, gives: 
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( ) 0 where the boundary of the domainx yz dy z dx zδ
Γ

− = Γ =∫ . 

 
Question 3 (3+4+1+2 = 10 marks) 
It is desired that an axially loaded fixed-free bar’s cross-section area, ( )A x , be designed with a 
given volume of material, *V , such that the overall stiffness and the displacement at a particular 
point, ˆx x= , are both maximized.  
 

(a) Justify that the following problem statement meets the above requirements and explain 
what the symbols in the problem statement stand for. 

 
2

0

( )

0

*

0
*

2
Minimize

Subject to

0

Data: Young's modulus, ( ) axial load, length,

L

LA x

L

P dx
EA

J
Pq dx
EA

Adx V

E f x L V

=

− ≤

= = =

∫

∫

∫

 

 
(b) Write down the Euler-Lagrange necessary conditions for this problem (You need not 

write the boundary conditions). 
(c) How do you justify that the volume constraint must be active/inactive? 
(d) Determine the expressions for the optimal ( )A x  and the Lagrange multiplier 

corresponding to the constraint. 
 
(a) Recall that the minimizing strain energy is equivalent to maximizing the stiffness of an elastic 

structure. For an axially loaded bar, the strain energy is given by 2

0

1
2

L

EAu dx⎛ ⎞′⎜ ⎟
⎝ ⎠∫ . This can be re-

written as ( )2 2
2

0 0 0

1
2 2 2

L L LEAu PEAu dx dx dx
AE AE
′⎛ ⎞′ = =⎜ ⎟

⎝ ⎠∫ ∫ ∫  where ( )P x  is the internal force due to the 

applied load ( )f x . Since it is a fixed free-bar, it is statically determinate. In a statically 
determinate structure ( )P x  can be determined without knowing the area of cross-section. 
Furthermore, it is independent of ( )A x . Thus, the numerator in the functional to be minimized 
serves the purpose of maximizing stiffness. 
 

Next, note that the mutual strain energy, ( ) ( )( )
0 0 0

L L LEAu EAv PqEAu v dx dx dx
AE AE
′ ′

′ ′ = =∫ ∫ ∫  is the 

displacement at ˆx x=  under ( )f x  where ( )q x  is the internal force and ( )v x  the deformation 
when a unit load is applied at ˆx x= . Since this term is in the denominator, minimizing the 
functional implies maximizing the displacement at ˆx x= .  
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The volume constraint is there as per the statement of the problem. Note that this being a 
statically determinate structure, governing differential equation is absent in the constraint. 
 

(b) First, we write the Lagrangian for the problem as { }
2

*0

0

0

2

L

L

L

P dx
EA

L Adx V
Pq dx
EA

= + Λ −
∫

∫
∫

. Note that the 

ratio of two integrals is dealt with by using the rules of ordinary calculus while taking the 
variations. 
 
By taking the variation with respect to ( )A x , we get: 
 

2
2

22 2 22 0
2 2 2

0 0 0

0 0

20 0
2

L

L L L

L L

P PqP dx
EA EA Pq P P Pq PqEAL dx dx dx

EA EA EAEA EAPq Pqdx dxEA EA

δ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟− ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠⎝ ⎠= ⇒ − + Λ = ⇒ − + = Λ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛ ⎞ ⎛ ⎞ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫
∫ ∫ ∫

∫ ∫
 

 
(c) If 0Λ = , from the last equation it implies that 
 

2

2 2
0 0

0 0
2

L LPq P P qL P dx dx
EA EAEA EA

δ
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⇒ − + =⎜ ⎟ ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∫ ∫ . Since P  cannot be zero in the entire span of the 

bar for any given load ( )f x , we note that  
2 2

2 2
0 0 0 0

2

0

0

0
22

2

L L L L

L

L

Pq P P q Pq P Pdx dx dx dx q
EA EA EA EAEA EA

P dx
EA P

qPq dx
EA

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + = ⇒ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠⇒ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫ ∫ ∫

∫

∫

 

The last result in the above equation, i.e., 
2
P
q

, is determined once ( )f x  and x̂  are given. So, this 

means that the functional to be minimized is already determined! Clearly, that value is not the 
mimimum. So, we argue that 0Λ ≠ . So, the constraint must be active. 
 
(d) From the E-L equation in (b), the expression for ( )A x  can be obtained as 

2

0

0

2
( )

L

L

Pq P Pqdx
EA E E

A x
Pq dx
EA

⎛ ⎞
+⎜ ⎟

⎝ ⎠=
⎛ ⎞

Λ ⎜ ⎟
⎝ ⎠

∫

∫
. 

 
The expression for the Lagrange multiplier Λ  can be determined by substituting the above 
expression for ( )A x  into the active volume constraint.  
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The expressions for ( )A x  and Λ  need to be simultaneously solved here by using a numerical 
technique. 
 
 
Question 4 (10 marks) 
Write down the extremizing differential equation and the boundary conditions for the following 
functional if the end points of  ( )y x  lie on curves 1( )xφ  and 2 ( )xφ . 
 

2

1

1 1 2 2( , , ) ( , , , )
x

x

J F x y y dx x y x yψ
⎧ ⎫⎪ ⎪′= +⎨ ⎬
⎪ ⎪⎩ ⎭
∫  

 
Note that 

11 x xy y ==  and 
22 x xy y == . 

 
By taking variation with respect to ( )y x , we get: 
 

( )
2

1

1 1 2 2
1 1 2 2

0 0
x

x y y
x

J F x F y F y dx x y x y
x y x y
ψ ψ ψ ψδ δ δ δ δ δ δ δ′

⎧ ⎫ ∂ ∂ ∂ ∂⎪ ⎪′= ⇒ + + + + + + =⎨ ⎬
∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

∫  

 
The first term in the integrand comes out of the integral to join the other (boundary) terms and 
integration by parts is needed to get rid of yδ ′ . This gives: 
 

( ) ( )
2

2

1
1

2 1 1 1 2 2
1 1 2 2

0
x

x

y y y x
x

F F y dx F y F x F x x y x y
x y x y
ψ ψ ψ ψδ δ δ δ δ δ δ δ′ ′

⎧ ⎫ ∂ ∂ ∂ ∂⎪ ⎪⎧ ⎫′− + + − + + + + =⎨ ⎨ ⎬ ⎬
∂ ∂ ∂ ∂⎩ ⎭⎪ ⎪⎩ ⎭

∫  

 
Note that 

1 1
1 1x x

y y y xδ δ δ′= −  and 
2 2

2 2x x
y y y xδ δ δ′= − . Since the end points lie on give curves 

1 1( )y xφ=  and 2 2 ( )y xφ= , we can write 1 1 1y xδ φ δ′=  and 2 2 2y xδ φ δ′= . By substituting these 
relationships into the long equation preceding this paragraph, we get: 
 

( )
2

1 1 2

1 1 1 2 2 2
1 1 2 2

( ) ( ) 0
x

y y y y
x x x

F F y dx F F y x F F y x
x y x y
ψ ψ ψ ψδ φ φ δ φ φ δ′ ′ ′

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂⎪ ⎪⎧ ⎫′ ′ ′ ′ ′⎢ ⎥ ⎢ ⎥′ ′− − + − − − + + − + + =⎨ ⎨ ⎬ ⎬ ⎨ ⎬ ⎨ ⎬
∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎣ ⎦

∫  

 
Since yδ , 1xδ  and 2xδ  are arbitrary, by fundamental lemma of calculus of variations, we write 
 

( )

1

2

1 1
1 1

2 2
2 2

0

( ) 0

( ) 0

y y

y

x

y

x

F F

F F y
x y

F F y
x y

ψ ψφ φ

ψ ψφ φ

′

′

′

′− =

⎧ ⎫∂ ∂′ ′′+ − − − =⎨ ⎬
∂ ∂⎩ ⎭

⎧ ⎫∂ ∂′ ′′+ − + + =⎨ ⎬
∂ ∂⎩ ⎭

 

The first in the above set is the E-L differential equation and the other two are boundary 
conditions. 


