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Question 1 (5  marks) 

Consider 
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J F x y y y y dx′′ ′′= ∫  and ( )f x . What possible terms can you add to the integrand 

of J  using ( )f x  and ( )y x  and their derivatives so that the new functional and ( )f x  have the 
same Euler-Lagrange extremizing differential equation as the extremizing solution? 
 
Question 2 (5  marks) 
What functional, when optimized, would lead to the Poisson’s equation: 2 ( , ) ( , )z x y g x y∇ = ? Please 
also write the boundary condition that arises when such a functional is extremized. 
 
Question 3 (3+4+1+2 = 10 marks) 
It is desired that an axially loaded fixed-free bar’s cross-section area, ( )A x , be designed with a 
given volume of material, *V , such that the overall stiffness and the displacement at a particular 
point, ˆx x= , are both maximized.  
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(a) Justify that the following problem meets the above requirement and explain what the 

symbols in the problem statement stand for. 
(b) Write down the Euler-Lagrange necessary conditions for this problem (You need not 

write the boundary conditions). 
(c) How do you justify that the volume constraint must be active/inactive? 
(d) Determine the expressions for the optimal ( )A x  and the Lagrange multiplier 

corresponding to the constraint. 
 

Question 4 (10 marks) 
Write down the extremizing differential equation and the boundary conditions for the following 
functional if the end points of  ( )y x  lie on curves 1( )xφ  and 2 ( )xφ . 
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Note that 

11 x xy y ==  and 
22 x xy y == . 


