Mid-term Examination
Marks: 30
Open notes and open books
Time: 60 minutes
Question 1 (10 marks)
Consider two inner products defined on vector spaces X and Y as mappings $X \times X$ and $Y \times Y$ respectively into their common scalar field K and denoted as $\left\langle x_{1}, x_{2}\right\rangle_{1}, x_{1}, x_{2} \in X$ and $\left\langle y_{1}, y_{2}\right\rangle_{1}, \quad \mathrm{y}_{1}, y_{2} \in Y$. Note also that there are the following relationships between X and Y.

Now, consider $J=\int_{a}^{b} x \frac{d y}{d t} d t$ with $x(t) \in X$ and $y(t) \in Y$.
If the result of the integration by parts of J can be expressed as $\left\langle x,-\frac{d y}{d t}\right\rangle_{1}=\left\langle y, \frac{d x}{d t}\right\rangle_{2}$, write down the formulae for the two inner products used here.

- Comment on the validity of your definitions of inner products for extra marks of up to 5 .

Question 2 (10 marks)

Write the Euler-Lagrange equation of the following problem of minimizing a functional of two independent variables.
$\underset{u(x, y)}{\operatorname{Minimize}} J=\iint_{R}\left[D\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)^{2}-2 D(1-v)\left\{\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial^{2} u}{\partial y^{2}}-\left(\frac{\partial^{2} u}{\partial x \partial y}\right)^{2}\right\}-f(x, y) u\right] d x d y$
Simplify the Euler-Lagrange equation to the extent possible.

- Extra points will be given for writing the boundary conditions. (Up to 10 extra marks.)

Question 3 (10 marks)
The figure below shows a horizontal beam of length L, Young's modulus E, moment of inertia I, and loaded with a force P at its mid point and constrained as follows. The left end is attached to a rigid crank of radius r_{1} with a pin joint and a torsional spring of spring constant κ. The right end is fixed to another rigid crank of radius r_{2}. The vertical separation between the grounded pivots of the two cranks is shown to be e. Obtain a functional the minimization of which gives the static equilibrium equation to solve for the deformed configuration of this problem. And then, write the Euler-Lagrange equations along with the boundary conditions in terms of the symbols noted here.

