Mid-term Examination		
Marks: 30	Open notes and open books	Time: 60 minutes

Question 1 (10 marks)

Consider two inner products defined on vector spaces X and Y as mappings $X \times X$ and $Y \times Y$ respectively into their common scalar field K and denoted as $\langle x_1, x_2 \rangle_1$, $x_1, x_2 \in X$ and $\langle y_1, y_2 \rangle_1$, $y_1, y_2 \in Y$. Note also that there are the following relationships between X and Y.

Now, consider
$$J = \int_{a}^{b} x \frac{dy}{dt} dt$$
 with $x(t) \in X$ and $y(t) \in Y$.

If the result of the integration by parts of *J* can be expressed as $\left\langle x, -\frac{dy}{dt} \right\rangle_1 = \left\langle y, \frac{dx}{dt} \right\rangle_2$, write down the formulae for the two inner products used here.

• Comment on the validity of your definitions of inner products for <u>extra</u> marks of up to 5.

Question 2 (10 marks)

Write the Euler-Lagrange equation of the following problem of minimizing a functional of two independent variables.

$$\underset{u(x,y)}{\text{Minimize}} \quad J = \iint_{R} \left[D\left(\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}}\right)^{2} - 2D(1-\nu) \left\{ \frac{\partial^{2}u}{\partial x^{2}} \frac{\partial^{2}u}{\partial y^{2}} - \left(\frac{\partial^{2}u}{\partial x \partial y}\right)^{2} \right\} - f(x,y)u \right] dxdy$$

Simplify the Euler-Lagrange equation to the extent possible.

• <u>Extra points</u> will be given for writing the boundary conditions. (*Up to 10 extra marks*.)

Question 3 (10 marks)

The figure below shows a horizontal beam of length L, Young's modulus E, moment of inertia I, and loaded with a force P at its mid point and constrained as follows. The left end is attached to a rigid crank of radius r_1 with a pin joint and a torsional spring of spring constant κ . The right end is fixed to another rigid crank of radius r_2 . The vertical separation between the grounded pivots of the two cranks is shown to be e. Obtain a functional the minimization of which gives the static equilibrium equation to solve for the deformed configuration of this problem. And then, write the Euler-Lagrange equations along with the boundary conditions in terms of the symbols noted here.

