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I. Mathematical Preliminaries to Calculus of Variations  
 
In finite-variable optimization (i.e., ordinary optimization that you are most likely familiar 
with as minimization or maximization–or extremization to cover both–of functions), we try to 
find the extremizing values of a finite number of scalar variables to get the extremum of a 
function that is expressed in terms of those variables. That is, we deal with functions of the 
form 1 2( , , , )nf x x x"  that need to be extremized by finding the values extremizing values of 

1 2, , , nx x x" . Calculus of variations also deals with minimization and maximization but what 
we extremize are not functions but functionals. 
 
The concept of a functional is crucial to calculus of variations as is a function for ordinary 
calculus of finite number of scalar variables. The difference between a function and a 
functional is subtle and yet profound. Let us first review the notion of a function in ordinary 
calculus so that we can understand how the functional is different from it. 
 
In this notes, for presenting mathematical formalisms, we will adopt a procedure that is 
different from what is usually followed in applied and engineering mathematics books. That 
is, instead of introducing a number of seemingly unconnected definitions and concepts first 
and then finally getting to what we really need, here we will first define or introduce what we 
actually need and then explain or define the new terms as we encounter them. This takes the 
suspense out of the notation, definitions and concepts as they are introduced. New terms are 
underlined and are immediately explained following their first occurrence. If anything is 
defined as it is first introduced, it is set in italics font. 
 
Because we want to see the difference between a function and a functional, let us start off 
with their definitions. 
 
Function 
 
A rule which assigns a unique real (or complex) number to every x∈Ω  is said to define a 
real (or complex) function. 
 
All is in plain English in the above definition of a function except that we need to say what 
Ω  is. It is called the domain of the function. It is a non-empty open set in ( )N N\ ^ . 
 

N\  (or N^ ) is a set of real (or complex) numbers in N  dimensions. An element Nx∈\  
(or N^ ) is denoted as { }1 2 3, , , , Nx x x x x= " . 
 
While the notion of a set is familiar to all those who may read this, the notion of an open set 
may be new to some. 
 
A set NS ⊂ ^  is open if every point (or element) of S  is the center of an open ball lying 
entirely in S . 
 
The open ball with center 0x  and radius r  in N\  is the set  ( ){ }0; ,N

Ex d x x r∈ <\ . 
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∑   is the Euclidean distance between { }1 2 3, , , , Nx x x x x= "  and 

{ }1 2 3, , ,..., Ny y y y y=  both belonging to N\ . 
 
This is how we formally define a function. You can notice how many related concepts needed 
to be introduced to define such a simple thing as a function! One should try to relate to these 
concepts with one’s own prior understanding of what a function is. Let us now do this for a 
functional so that you can see how it is different so that it too becomes as natural and intuitive 
as a function is to you. A functional is sometimes loosely defined as a function of function(s). 
But that does not suffice for our purposes as it is subtler than that. 
 
Functional 
 
A functional is a particular case of an operator, in which ( )R A ∈R  or ^ . Depending on 
whether it is real or complex, we define real or complex functionals respectively. 
 
Operator 
 
A correspondence ( ) ,  ,  A x y x X y Y= ∈ ∈  is called an operator from one metric space  into 
another metric space Y , if to each x X∈  there corresponds no more than one y Y∈ .  
 
The set of all those x X∈  for which there exists a correspondence y Y∈  is called the 
domain of A  and is denoted by ( )D A ; the set of all y  arising from x X∈  is called the 

range of A  and is denoted by ( )R A . 
 
( ) ( ){ };  ,  R A y Y y A x x X= ∈ = ∈  

 
Note also that ( )R A  is the image of ( )D A  under the operator A . 
 
Now, what is a metric space? 
 
Metric space 
 
A metric space is a pair ( ),X d  consisting of a set X  (of points or elements) together with a 

metric d , which a real valued function ( ),d x y  defined for any two points ,x y X∈  and 
which satisfies the following four properties: 
 
 (i)     ( ),d x y ≥ 0                               (“non-negative”) 
 
 (ii)   ( ), 0d x y =  if and only if x y=  
 
 (iii)  ( ) ( ), ,d x y d y x=                     (“symmetry”) 
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 (iv)  ( ) ( ) ( ), , ,d x y d x z d z y≤ +   where , ,x y z X∈ . (“triangular inequality”) 
 
 
A metric is a real valued function  ( ), ,    , Nd x y x y∈\  that satisfies the above four properties. 
 
Let us look at some examples of metrics defined in N\ . 
 
 1. ( ),  in d x y x y= − \  

 2. ( )
1 for 

,  in 
0 for 

x y
d x y

x y
≠⎧

= ⎨ =⎩
\  

 3 ( ) ( ) ( )2 2 2
1 2 1 2,  in d x y x y x x y y= − = − + − \  

 4. ( ) 2
1 2 1 2,    also in d x y x x y y= − + − \  

 
We can see above that the same \  has two different metrics—the first and second ones in 
the above list. Likewise, the third and fourth are two metrics for 2\ . Thus, each real number 
set in N  dimensions can have a number of metrics and hence it can give rise to a number of 
different metric spaces.  
 
The space X  we have used so far is good enough for ordinary calculus. But, in calculus of 
variations our unknown is a function. So, we need a new set that is made up of functions. 
Such a thing is called a function space. Let us come to it from something more general than 
that. We call such a thing a vector space. Let us see what this is. First, note that the vector 
that we refer to here is not limited to what we usually know in analytical geometry and 
mechanics as a vector with a magnitude and a direction. 
 
Vector space  
 
A vector space over a field K  is a non-empty set X  of elements of any kind (called vectors) 
together with two algebraic operations called vector addition ( )⊕  and scalar multiplication 

( ):  such that the following 10 properties are true.  
 

1.  for all ,x y X x y X⊕ ∈ ∈ .     “The set is closed under addition”. 
2. .x y y x⊕ = ⊕                           “Commutative law” 
3. ( ) ( )x y z x y z⊕ ⊕ = ⊕ ⊕           “Associative law” 
4. There exists an additive identity θ  such that  for all x x x x Xθ θ⊕ = ⊕ = ∈   
5. There exists an additive inverse  such that x x x x θ′ ′⊕ = ⊕ =  
6. For all ,  and all ,  x XK x Xα α∈ ∈ ∈:  “The set is closed under scalar 

multiplication”. 
7. ( ) ( ) ( )For all ,  and all , , x yK x y X x yα α α α∈ ∈ ⊕ = ⊕: : :  

8. ( ) ( ) ( )         , ,    x x x K x Xα β α β α β+ = + ∈ ∈: : :  

9. ( ) ( ) x xαβ α β=: : :  

10. There exists a multiplicative identity such that ( )1 ;        and 0x x x θ= ∈: :  
 



Lecture notes #1 of ME 256: Variational Methods and Structural Optimization  Jan.-May, 2007 

 4 of 8 Ananthasuresh, IISc 

Pardon the strange symbols that are used for addition and multiplication but that generality is 
needed so that we don’t think in terms of our prior notions of usual multiplications and 
additions. We use the usual symbols to define a field, a term we used above. 
 
A set of elements with two binary operators +  and i  is called a field if it satisfies the 
following ten properties. 
 

 
( ) ( )

( )
( ) ( ) ( )

1.            ,
2.        , ,

3.    0 0          ,   "0 additive identity"

4.    0           "additive inverse"

a b b a a b K
a b c a b c a b c K

a a a a K

a a a a

+ = + ∈

+ + = + + ∈

+ = + = ∈ =

+ − = − + =

 

 

( )
( ) ( )

1 1

5.                                    "cummutative law"

6.   
7.    1 1
8.    1                     for all  except "0"

a b b a

a b c a b c
a a a
a a a a a K− −

⋅ = ⋅

⋅ ⋅ = ⋅ ⋅

⋅ = ⋅ =

⋅ = ⋅ = ∈

 

 
( ) ( ) ( )

( ) ( ) ( )
9.    

10.  

a b c a b a c

a b c a c b c

⋅ + = ⋅ + ⋅

+ ⋅ = ⋅ + ⋅
 

 
Based on the foregoing, we can understand a vector space as a special space of elements 
(called vectors as already noted) of which the functions that we consider are just one type.  
 
Next, we consider normed vector spaces, which are simply the counterparts of metric spaces 
that are defined for normal Euclidean spaces such as N\ . 
 
Normed vector space 
 
A normed vector space is a vector space on which a norm is defined. 
 
A norm defined on a vector space X  is a real-valued function from X  to \  , i.e., 

:f X →\  whose value at x X∈  is denoted by ( )f x x= ∈\  and has the following 
properties: 
 
(i)   0                      for all 

(ii)  0                      if and only if  

(iii)             ,   

(iv)       ,

x x X

x x

x x K x X

x y x y x y X

θ

α α α

≥ ∈

= =

= ∈ ∈

+ ≤ + ∈

 

 
The above four properties may look trivial. If you think so, try to think of a norm for a certain 
vector space that satisfies these four properties. It is not as easy as you may think! Later, we 
will see some examples of norms for function spaces that we are concerned with in this 
course. 
 
Let us understand more about function spaces. 
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Function space  
 
A function space is simply a set of functions. We are interested in specific types of function 
spaces which are vector spaces. In other words, the “vectors” in such vector spaces are 
functions. Let us consider a few examples to understand what function spaces really are. 
 
1. [ ] ( )0 ,      , ;    max      

a t b
C a b a b K x x t

≤ ≤
∈ =  

As shown above 0 C  is a function space of all continuous function defined over the interval 
[ , ]a b . It is a normed vector space with the norm defined as shown. Does this norm satisfy the 
four properties? 
 

2. [ ]0
int ,      , ;    ( )      

b

a

C a b a b K x x t dt∈ = ∫  

This represents another function space of all continuous functions over an interval. This too is 
a normed vector space but with a different norm. 
 

3. [ ]0 2
int 2 ,      , ;    ( )      

b

a

C a b a b K x x t dt∈ = ∫  has yet another norm and denotes one 

more function space that is a normed vector space. 
 
4. [ ] ( ) ( )1 ,       , ;    max max

a t b a t b
C a b a b K x x t x t

≤ ≤ ≤ ≤
∈ = + �  

Here, [ ]1 ,C a b  is a set of all continuous functions that are also differentiable once. Note how 
the norm is defined in this case. Does this norm satisfy the four properties? 
 
Let us now briefly mention some very important classes of function spaces that are widely 
used in functional analysis—a field of mathematical study of functionals. The functionals are 
of course our main interest here. 
 
Banach space 
 
A complete normed vector space is called a Banach space. 
  
A normed vector space X  is complete if every Cauchy sequence from X  has a limit in X  
 
A sequence { }nx  in a normed vector space is said to be Cauchy (or fundamental) sequence if 

0    as ,n mx x n m− → →∞    
 
In other words, given 0ε >  there is an integer N  such that n mx x ε− <   for all ,m n N>  
 
x X∈  is called a limit of a convergent sequence { }nx  in a normed vector space if the 

sequence { }nx x−  converges to zero. In other words, lim 0nn
x x

→∞
− = . 

 
Verifying if a given normed vector space is a Banach space requires an investigation into the 
limit of all Cauchy sequences. This needs tools of real analysis. We are not going to discuss 
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them here. But let us try to relate to these sequences from a practical viewpoint and why we 
should worry about them. 
 
In the context of structural optimization, we can imagine the sequences (that may or may not 
be Cauchy sequences) as candidate designs that we obtain in a sequence in iterative 
numerical optimization. As you may be aware any numerical optimization technique needs an 
initial guess which is improved in each iteration. Thus, we get a sequence of “vectors” 
(functions in our study). Whether such a sequence converges at all, or converges to a limit 
within the space we are concerned with, are important practical questions. The abstract notion 
of a complete normed vector space helps us in this regard. So, it is useful to know the 
properties of a function space that we are dealing with. It is one way of knowing if numerical 
optimization would converge to a limit, which will be our optimal solution.  
 
Hilbert space 
 
A complete inner product space is called a Hilbert space. 
 
An inner product space (or pre-Hilbert space) is a vector space X  with an inner product 
defined on it. 
 
An inner product on a vector space X  is a mapping X X×   into a scalar field K  of X  
denoted as , ,    ,x y x y X∈  and satisfies the following properties:  
 
( )
( )
( )
( )

i     , , ,

ii    , ,

iii   , ,         The over bar denotes conjugation and is not necessary if ,  are real.

iv    , 0 and

          , 0 if and only if 

x y z x z y z

x y x y

x y y x x y

x x

x x x

α α

θ

+ = +

=

=

≥

= =
 
Note the following relationship between a norm and an inner product. 
 ,x x x=  
 
Note also the relationship between a metric and an inner product. 
 ( ), ,d x y x y x y x y= − = − −  
 
As an example, for 0[ , ]C a b , the norm and inner product defined as follows. 

 

2 ( ) ,

, ( ) ( )

b

a

b

a

x x t dt x x

x y x t y t dt

= =

=

∫

∫
 

 
Thus, inner product spaces are normed vector spaces. Likewise, Hilbert spaces are Banach 
spaces. 
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Normed vector spaces give us the tools for algebraic operations to be performed on vector 
spaces because we have the notion of how close things (“vectors”) are to each other by way 
of norm. Inner product spaces enable us to do more—study the geometric aspects. As an 
example, consider that orthogonality (or perpendicularity) or lack of it is easily noticeable 
from the inner product. 
 
For , , if , =0 , then  is said to be orthogonal to 
        

x y X x y x y∈   

 
Banach and Hilbert spaces are classes of useful function spaces (again remember that a 
function space is only one type of the more general concept of a vector space). There are also 
some specific function spaces that we should be familiar with as they are the spaces to which 
the design spaces that we consider in structural optimization actually belong. 
 
Lebesgue space 
 
A Lebesgue space defined as below is a Banach space. 
 

( ) ( ){ } ( ) ( )
1

:  is defined on  and  where       1q q

q
qq

L LL v v v v v x dx q
Ω

Ω Ω

⎛ ⎞
Ω = Ω < ∞ = ≤ ≤ ∞⎜ ⎟

⎝ ⎠
∫

 
The case of 2q =  gives ( )2L Ω  consisting of all square-integrable functions. The integration 
of square of a function is important for us as it often gives the energy of some kind. Think of 
kinetic energy which is a scalar multiple of the square of the velocity. On many occasions, we 
also have other energies (usually potential energies or strain energies) that are squares of 
derivatives of functions. This gives us a number of energy spaces. The Sobolev space gives 
us exactly that. 
 
Sobolev space 
 

( ) ( ) ( ){ }

( ) ( )

( ) ( ){ }

,
1

1

1 1

,

, : ,         1

where

     is the  

:  for any compact  inside 

r q

q

q

r q

r q
w

q

Lrw

W v L v q

v D v Sobolev norm

L v v L K K

α

α

Ω

Ω≤Ω

Ω = ∈ Ω < ∞ ≤ ≤ ∞

⎫⎪⎛ ⎞= Σ ⎬⎜ ⎟
⎝ ⎠ ⎪⎭

Ω = ∈ Ω

 

 
Dα  used above denoted the derivative of order α . Sobolev space is a Banach space. 
 
Note: We have used the qualifying word “compact” for K  above. A closed and bounded set 
is called a compact set. We will spare us from the definitions of closedness and boundedness 
of a set because we have already deviated from our main objective of knowing what a 
functional is. Let us return to functionals now. 
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We have defined a functional as a particular case of an operator whose range is a real (or 
complex) number set. Let us also consider another definition which says the same thing but in 
a different way as we have talked much about vector spaces and fields. 
 
Functional—another definition 
 
A functional f  is a transformation from a vector space to its coefficient field : .f X K→  
 
Let us now look at certain types of functionals that are of main interest to us. 
 
A linear functional is one for which   
( ) ( ) ( )     for all ,f x y f x f y x y X+ = + ∈  and ( ) ( )    for all ,  f x f x K x Xα α α= ∈ ∈  hold 

good. Some people write the above two linearity properties as a single property as follows. 
( ) ( ) ( )     for all , ; ,f x y f x f y x y X Kα β α β α β+ = + ∈ ∈  

 
A definite integral is a linear functional. We will deal with a lot of definite integrals in 
calculus of variations as well as variational methods and structural optimization. 
 
A bounded functional is one when there exists a real number c  such that ( )f x c x≤  where 

 is the norm in ;  is the norm in K X⋅ ⋅ . 
 
Continuous functional 
 
Now, we have discussed in which function spaces our functions reside. In calculus of 
variations, our unknowns are functions. Our objective is a functional. Just as in ordinary 
finite-variable optimization, in calculus of variations too we need to take derivatives of 
functionals. What is the equivalent of a derivative for a functional? Before we define such a 
thing, we need to understand the concept of continuity for a functional. We do that next. 
 
A functional J   is said to be continuous at x  in D  (an open set in a given normed vector 
space X  )  if J  has the limit ( )J x  at x  . Or symbolically, ( ) ( )lim

y x X
J y J x

→ ∈
= . 

 
J  is said to be continuous on D  if J  is  continuous at each vector in D  
 
J  has the limit L   at x  if for every positive number ε  there is a ball ( )rB x  (with radius r ) 

contained in  D  such that ( )L J y ε− <  for all ( )ry B x∈ . Or symbolically,      

( )lim =
y x X

J y L
→ ∈

. 

 
 


