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Function spaces and variation of functionals 
 
Banach space 
 
A complete normed vector space is called a Banach space. 
  
A normed vector space X  is complete if every Cauchy sequence from X  has a limit in X  
 
A sequence { }nx  in a normed vector space is said to be Cauchy (or fundamental) sequence if 

0    as ,n mx x n m− → →∞    
 
In other words, given 0ε >  there is an integer N  such that n mx x ε− <   for all ,m n N>  
 
x X∈  is called a limit of a convergent sequence { }nx  in a normed vector space if the 

sequence { }nx x−  converges to zero. In other words, lim 0nn
x x

→∞
− = . 

 
Verifying if a given normed vector space is a Banach space requires an investigation into the 
limit of all Cauchy sequences. This needs tools of real analysis. We are not going to discuss 
them here. But let us try to relate to these sequences from a practical viewpoint and why we 
should worry about them. 
 
In the context of structural optimization, we can imagine the sequences (that may or may not 
be Cauchy sequences) as candidate designs that we obtain in a sequence in iterative 
numerical optimization. As you may be aware any numerical optimization technique needs an 
initial guess which is improved in each iteration. Thus, we get a sequence of “vectors” 
(functions in our study). Whether such a sequence converges at all, or converges to a limit 
within the space we are concerned with, are important practical questions. The abstract notion 
of a complete normed vector space helps us in this regard. So, it is useful to know the 
properties of a function space that we are dealing with. It is one way of knowing if numerical 
optimization would converge to a limit, which will be our optimal solution.  
 
Hilbert space 
 
A complete inner product space is called a Hilbert space. 
 
An inner product space (or pre-Hilbert space) is a vector space X  with an inner product 
defined on it. 
 
An inner product on a vector space X  is a mapping X X×   into a scalar field K  of X  
denoted as , ,    ,x y x y X∈  and satisfies the following properties:  
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Note the following relationship between a norm and an inner product. 
 ,x x x=  
 
Note also the relationship between a metric and an inner product. 
 ( ), ,d x y x y x y x y= − = − −  
 
As an example, for 0[ , ]C a b , the norm and inner product defined as follows. 

 

2 ( ) ,

, ( ) ( )

b

a

b

a

x x t dt x x

x y x t y t dt

= =

=

∫

∫
 

 
Thus, inner product spaces are normed vector spaces. Likewise, Hilbert spaces are Banach 
spaces. 
 
Normed vector spaces give us the tools for algebraic operations to be performed on vector 
spaces because we have the notion of how close things (“vectors”) are to each other by way 
of norm. Inner product spaces enable us to do more—study the geometric aspects. As an 
example, consider that orthogonality (or perpendicularity) or lack of it is easily noticeable 
from the inner product. 
 
For , , if , =0 , then  is said to be orthogonal to 
        

x y X x y x y∈   

 
Banach and Hilbert spaces are classes of useful function spaces (again remember that a 
function space is only one type of the more general concept of a vector space). There are also 
some specific function spaces that we should be familiar with as they are the spaces to which 
the design spaces that we consider in structural optimization actually belong. 
 
Lebesgue space 
 
A Lebesgue space defined as below is a Banach space. 
 

( ) ( ){ } ( ) ( )
1

:  is defined on  and  where       1q q

q
qq

L LL v v v v v x dx q
Ω

Ω Ω

⎛ ⎞
Ω = Ω < ∞ = ≤ ≤ ∞⎜ ⎟

⎝ ⎠
∫
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The case of 2q =  gives ( )2L Ω  consisting of all square-integrable functions. The integration 
of square of a function is important for us as it often gives the energy of some kind. Think of 
kinetic energy which is a scalar multiple of the square of the velocity. On many occasions, we 
also have other energies (usually potential energies or strain energies) that are squares of 
derivatives of functions. This gives us a number of energy spaces. The Sobolev space gives 
us exactly that. 
 
Sobolev space 
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Dα  used above denoted the derivative of order α . Sobolev space is a Banach space. 
 
Note: We have used the qualifying word “compact” for K  above. A closed and bounded set 
is called a compact set. We will spare us from the definitions of closedness and boundedness 
of a set because we have already deviated from our main objective of knowing what a 
functional is. Let us return to functionals now. 
 
We have defined a functional as a particular case of an operator whose range is a real (or 
complex) number set. Let us also consider another definition which says the same thing but in 
a different way as we have talked much about vector spaces and fields. 
 
Functional—another definition 
 
A functional f  is a transformation from a vector space to its coefficient field : .f X K→  
 
Let us now look at certain types of functionals that are of main interest to us. 
 
A linear functional is one for which   
( ) ( ) ( )     for all ,f x y f x f y x y X+ = + ∈  and ( ) ( )    for all ,  f x f x K x Xα α α= ∈ ∈  hold 

good. Some people write the above two linearity properties as a single property as follows. 
( ) ( ) ( )     for all , ; ,f x y f x f y x y X Kα β α β α β+ = + ∈ ∈  

 
A definite integral is a linear functional. We will deal with a lot of definite integrals in 
calculus of variations as well as variational methods and structural optimization. 
 
A bounded functional is one when there exists a real number c such that ( )f x c x≤  where 

 is the norm in ;  is the norm in K X⋅ ⋅ . 
 
Continuous functional 
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Now, we have discussed in which function spaces our functions reside. In calculus of 
variations, our unknowns are functions. Our objective is a functional. Just as in ordinary 
finite-variable optimization, in calculus of variations too we need to take derivatives of 
functionals. What is the equivalent of a derivative for a functional? Before we define such a 
thing, we need to understand the concept of continuity for a functional. We do that next. 
 
A functional J   is said to be continuous at x  in D  (an open set in a given normed vector 
space X  )  if J  has the limit ( )J x  at x  . Or symbolically, ( ) ( )lim

y x X
J y J x

→ ∈
= . 

 
J  is said to be continuous on D  if J  is  continuous at each vector in D  
 
J  has the limit L   at x  if for every positive number ε  there is a ball ( )rB x  (with radius r ) 

contained in  D  such that ( )L J y ε− <  for all ( )ry B x∈ . Or symbolically,      

( )lim =
y x X

J y L
→ ∈

. 

 
Since the derivative of a function being zero is a necessary condition for the extremum of a 
function in ordinary calculus, let us now tackle the question of the equivalent of a derivative 
for functionals. Let us begin with a simple but very important concept called a Gâteaux 
variation. 
 
Gâteaux variation 
 
The functional ( )J xδ  is called the Gâteaux variation of J  at x  when the limit that is 
defined as follows exists. 
 

        ( ) ( )
0

( ; ) lim
J x h J x

J x h
ε

ε
δ

ε→

+ −
=  where h  is any vector in X . 

 
Let us look at the meaning of h  and ε  geometrically. Note that ,x h X∈  . Now, since x  is 
the unknown function to be found so as to minimize (or maximize) a functional, we want to 
see what happens to the functional ( )J x  when we perturb this function slightly. For this, we 
take another function h  and multiply it by a small number ε . We add hε  to x  and look at 
the value of ( )J x hε+ . That is, we look at the perturbed value of the functional due to 
perturbation hε . This is the shaded area shown in Fig. 1 where the function x  indicated by a 
thick solid line, h  by a thin solid line, and x hε+  by a thick dashed line. Next, we think of 
the situation of ∈  tending to zero. As 0∈→ , we consider the limit of the shaded area divided 
by ∈ . If this limit exists, such a limit is called the Gâteaux variation of ( )J x  at x  for an 
arbitrary but fixed vector h . Note that, we denote it as ( ; )J x hδ .  
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Figure 1. Pictorial depiction of variation hε  of a function x  

                        
Although the most important developments in calculus of variations happened in 17th and 18th 
centuries, this formalistic concept of variation was put forth by a French mathematician 
Gâteaux around the time of the first world war. So, one can say that intuitive and creative 
thinking leads to new developments and rigorous thinking  makes them mathematically sound 
and completely unambiguous. To reinforce our understanding of the Gâteaux variation 
defined as above, let us relate it to the concept of a directional derivative in multi-variable 
calculus. 
 
A directional derivative of the function ( )1 2, ,........., nf x x x  denoted in a compact form as 

( )f x  in the direction of a given vector h  is given by 

              
( ) ( )

0
lim

f x h f x
ε

ε

ε→

+ −
. 

Here the “vector” is the usual notion that you know and not the extended notion of a “vector” 
in a vector space. We are using the overbar to indicate that the denoted quantity consist of 
several elements in an array as in a column (or row) vector. You know how to take the  
derivative of a function ( )f x  with respect to any of its variables, say , 1ix i n≤ ≤ . It is 

simply a partial derivative of ( )f x  with respect to ix . You also know that this partial 

derivative indicates the rate of change of ( )f x  in the direction of ix . What if you want to 

know the rate of change of ( )f x  in some arbitrary direction denoted by h ? This is exactly 
what a directional derivative gives. 
 
Now, relate the concept of the directional derivative to Gâteaux variation because we want to 
know how the value of the functional changes in a “direction” of another element h  in the 
vector space. Thus, the Gateaux variation extends the concept of the directional derivative 
concept of finite multi-variable calculus to infinite dimensional vector spaces, i.e., calculus of 
functionals. 
 
Gâteaux differentiability 
 
If Gateaux variation exists for all h X∈  then J  is said to be Gateaux differentiable. 

Domain D(X) 

Function 

x 

x+εh 

h 
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Operationally useful definition of Gâteaux variation 
 
Gateaux variation can be thought of as the following ordinary derivative evaluated at 0ε =  
 

                   ( ) ( )
0

; dJ x h J x h
d ε

δ ε
ε =

= +  

 
This helps calculate the Gâteaux variation easily by taking an ordinary derivative instead of 
evaluating the limit as in the earlier formal definition. Note that this definition follows from 
the earlier definition and the concept of how an ordinary derivative is defined in ordinary 
calculus if we think of the functional as a simple function of ε . 
 
Gâteaux variation and the necessary condition for minimization of a functional 
 
Gâteaux variation provides a necessary condition for a minimum of a functional. 
 
Consider   where ( ) ,     ,J x x D∈  is an open subset of a normed vector space X  and *x D∈  
and any fixed vector h X∈  
 
If *x  is a minimum, then   
 
    ( ) ( )* * 0J x h J xε+ − ≥  
 
must hold for all sufficiently small ε  
 
Now,   

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )
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≤ ⎪

⎭
âteaux variation

ensures the existence of this limit

( ; ) 0J x hδ= =

 

 
This simple derivation proves that the Gâteaux variation being zero is the necessary condition 
for the minimum of a functional. Likewise we can show (by simply reversing the inequality 
signs in the above derivation) that the same necessary condition applies to maximum of a 
functional.  
 
Now, we can state this as a theorem since it is a very important result. 
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Theorem: necessary condition for a minimum of a functional  
  
            ( )*; 0   for all J x h h Xδ = ∈  
 
Based on the foregoing, we note that the Gâteaux variation is very useful in the minimization 
of a functional but the existence of Gateaux variation is a weak requirement on a functional 
since this variation does not use a norm in X . Thus, it is not directly related to the continuity 
of a functional. For this purpose, another differential called Fréchet differential has been put 
forth. 
 
Frechet differential  
 

                    
( ) ( ) ( )

0

;
0lim

h

J x h J x dJ x h
h→

+ − −
=  

 
 
If the above condition holds and ( );dJ x h  is a linear, continuous functional of h , then J  is 
said to be Fréchet differentiable at x  with “increment” h .  
 

( );dJ x h  is called the Fréchet differential. 
 
If  J  is differentiable at each x D∈  we say that J  is Fréchet differentiable in D . 
 
Some properties of Fréchet differential  
 

i) ( ) ( ) ( ) ( ); ;J x h J x dJ x h E x h h+ = + +  for any small non-zero h X∈  has a limit 
 zero at the zero vector in X . That is, 
 
       ( )

0 in 
lim ; 0

h X
E x h

→
= . 

  
 Based on this, sometimes the Fréchet differential is also defined as follows. 
 

  
( ) ( ) ( )

0

;
0lim

h

J x h J x dJ x h
h→

+ − −
= .  

 
ii)  ( ) ( )1 1 2 2 1 1 2 2; ; ( ; )dJ x a h a h a dJ x h a dJ x h+ = +  must hold for any numbers 1 2,a a K∈     

and any 1 2,h h X∈ .       
 This is simply the linearity requirement on the Fréchet differential. 
 
iii)  ( ); constant    for all dJ x h h h X≤ ∈    
 This is the continuity requirement on the Fréchet differential. 
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iv)  ( ) ( )
Frechet 
derivative

;dJ x h J x h′=   

This is to say that the Fréchet differential is a linear functional of h . Note that it also 
introduces a new definition: Fréchet derivative, which is simply the coefficient of h  
in the Fréchet differential. 

 
Gâteaux variation and Fréchet differential  
 
If a functional J  is Fréchet differentiable at x  then the Gateaux variation of J  at x   
exists and is equal to the frechet differential. That is, 
 
 ( ) ( ); ;    for all   J x h dJ x h h Xδ = ∈  
 
Here is why: 
 
Due to the linearity property of ( );dJ x h , we can write 
 
  ( ) ( ); ;dJ x h dJ x hε ε=  
 
Substituting the above result into property (i) of the Fréchet differential noted earlier, we 
get 
 
 ( ) ( ) ( ) ( ); , for any J x h J x dJ x h E x h h h Xε ε ε ε+ − − = ∈  
 
A small rearrangement of terms yields 
 

 ( ) ( ) ( ) ( ); ,
J x h J x

dJ x h E x h h
εε

ε
ε ε

+ −
= +  

 
When limit 0ε →  is taken, the above equation gives what we need to prove: 
 

 ( ) ( ) ( ) ( ) ( )
0 0

lim ; ;     because lim , 0
J x h J x

J x h dJ x h E x h h
ε ε

εε
δ ε

ε ε→ →

+ −
= = =  

 
Note that the latter part of property (i) is once again used above. 
 

Operations using Gateaux variation   
 
Consider a simple general functional of the form shown below. 
 

( ) ( ) ( )( )

( )

2

1

,  ,   

where 

x

x

J y F x y x y x dx

dyy x
dx

′=

′ =

∫
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Note our sudden change of using x . It is no longer a member (element, vector) of a normed 
vector space X . It is now an independent variable and defines the domain of ( )y x , which is 
a member of a normed vector space. Now, ( )y x  is the unknown function using which the 
functional is defined. 
 
If we want to calculate the Gâteaux variation of the above functional, instead of using the 
formal definition that needs an evaluation of the limit we should use the alternate 
operationally useful definition—taking the ordinary derivative of ( )J y hε+  with respect to 
ε  and evaluating at 0ε = . In fact, there is even easier route that almost like a thumb-rule. 
Let us find that by using the derivative approach for the above simple functional. 
 

( ) ( ) ( ) ( ) ( )( )
2

1

,  + ,  
x

x

J y h F x y x h x y x h x dxε ε ε′ ′+ = +∫  

 

Recalling that ( ) ( )
0

; dJ x h J x h
d ε

δ ε
ε =

= + , we can write 

 

( ) ( )

( ){ }

2

1

2

1

,  + ,  

                     ,  + ,  

x

x

x

x

d dJ x h F x y h y h dx
d d

F x y h y h dx

ε ε ε
ε ε

ε ε
ε

⎧ ⎫⎪ ⎪′ ′+ = +⎨ ⎬
⎪ ⎪⎩ ⎭

∂ ′ ′= +
∂

∫

∫
 

 
Please note that the order of differentiation and integration have been switched above. It is a 
legitimate operation. By using chain-rule of differentiation for the integrand of the above 
functional, we can further simplify it as to obtain 
 

( ) ( ) ( )
2 2

1 10

;
x x

x x

F F F FJ x h h h h h dx
y h y h y y

ε

δ
ε ε

=

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂′ ′= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′∂ + ∂ + ∂ ∂⎝ ⎠⎝ ⎠
∫ ∫ . 

 
What we have obtained above is a general result in that for any functional, be it of the form 

( , , , , , )J x y y y y′ ′′ ′′′ , we can write the variation as follows. 
 

( )
2 2

1 1

; ( , , , , , )
x x

x x

F F F FJ x h F x y y y y dx h h h h dx
y y y y

δ
⎛ ⎞∂ ∂ ∂ ∂′ ′′ ′′′ ′ ′′ ′′′= = + + + +⎜ ⎟′ ′′ ′′′∂ ∂ ∂ ∂⎝ ⎠

∫ ∫ . 

 
Note that in taking partial derivatives with respect to y  and its derivatives we treat them as 
independent. It is a thumb-rule that enables us to write the variation rather easily by 
inspection and using rules of partial differentiation of ordinary calculus. 
 
We have now laid the necessary mathematical foundation for deriving the Euler-Lagrange 
equations that are the necessary conditions for the extremum of a function. Note that the 
Gâteaux variation still has an arbitrary function h . When we get rid of this, we get the Euler-
Lagrange equations. For that we need to talk about fundamental lemmas of calculus of 
variations. 


