
Lecture 11

September 8, 2005

1 Size-optimization of an axially loaded bar

We consider the problem of the size optimization of an axially loaded homoge-
neous bar as shown in Figure 1.

Figure 1: Bar of length L of varying area of cross-section under axial load p(x)

Given

Young’s modulus of material, E

Length of the bar, L

Axial load, p(x)

Prescribed volume, V ∗

Wanted Stiffest bar

To be determined A(x) = area of cross-section

1.1 A measure of stiffness

Mean compliance
L
∫

0

pu dx — the smaller, the stiffer. Here u(x) is the axial

deformation in the bar.
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1.2 Problem statement

Min
A(x)

∫ L

0

pu dx (1)

subject to

Λ :

L
∫

0

A dx − V ∗ ≤ 0 Resource constraint (2)

λ : (EAu′)
′
+ p = 0 Governing equation (3)

We start by defining the Lagrangian, which is to be minimized.

L =

L
∫

0

pudx + Λ







L
∫

0

A dx − V ∗







+

L
∫

0

λ
{

(EAu′)
′
+ p

}

dx (4)

Taking variations with respect to each of the dependent variables, we get

δL
A

= 0 : λEu′′ − (λEu′)
′
+ Λ = 0

⇒ λ′Eu′ = Λ (5)

The corresponding boundary condition is given by

λEu′ δA|L0 = 0 (6)

Similarly, we take variation with respect to u and obtain the corresponding
boundary conditions

δL
u

= 0 : p − (λEA′)
′
+ (λEA)

′′
= 0

⇒ p + (λ′EA)′ = 0 (7)

λEA δu′|L0 = 0 (8)

λ′EA δu|L0 = 0 (9)

Comparing Eqns. 3 and 7, we get

λ = u (10)

Substituting this into Eqn. 5 we can solve for u(x)

λ′2E = u′2E = Λ ⇒ u′ =

√

Λ

E
(11)

Putting Eqn. 11 into Eqn. 3, we determine A(x) as

√
ΛE A′ + p = 0 ⇒ A(x) = −

x
∫

0

p(ξ)√
ΛE

dξ + C (12)
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For the simple case of a constant distributed load, we see that A(x) monoton-
ically decreases as indicated by the negative slope. However, since we require
A(x) to be positive everywhere, we have to impose a lower bound at x = L.
To impose bounds on the range of A(x), we therefore re-state the problem with
these two new constraints on the design variable.

1.3 Size optimization with bounds on A(x)

Min
A(x)

∫ L

0

pu dx (13)

subject to1

Λ :

L
∫

0

A dx − V ∗ ≤ 0 Resource constraint (14)

λ : (EAu′)
′
+ p = 0 Governing equation (15)

µ1 : Al − A ≤ 0 Lower bound on A (16)

µ2 : A − Au ≤ 0 Upper bound on A (17)

where Al and Au are the lower and upper bounds of A respectively.

The Lagrangian for the modified problem now becomes

L =

L
∫

0

pudx + Λ







L
∫

0

A dx − V ∗







+

L
∫

0

λ
{

(EAu′)
′
+ p

}

dx

+

L
∫

0

µ1 (Al − A) dx +

L
∫

0

µ2 (A − Au) dx (18)

Taking variations with respect to each of the dependent variables, we get

δL
A

= 0 : λEu′′ − (λEu′)
′
+ Λ + µ2 − µ1 = 0

⇒ λ′Eu′ = Λ + µ2 − µ1 (19)

δL
u

= 0 : p − (λEA′)
′
+ (λEA)

′′
= 0

⇒ p + (λ′EA)′ = 0 (20)

Comparing Eqns. 15 and 20, we get

λ = u (21)

1By always expressing inequality constraints to be less than or equal to 0, we ensure that

the associated Lagrange multipliers are always non-negative.
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Substituting this into Eqn. 19 we can solve for u(x)

λ′2E = u′2E = Λ + µ2 − µ1 ⇒ u′ =

√

Λ + µ2 − µ1

E
(22)

From the Karush-Kuhn-Tucker(KKT) complementarity conditions, we get

µ1 (Al − A) = 0 (23)

µ2 (A − Au) = 0 (24)

Λ







L
∫

0

A dx − V ∗







= 0 (25)

µ1, µ2, Λ ≥ 0 (26)

Due to the constraints imposed on A, there are three cases possible depending
on whether A equals either of the bounds or is in between them. Due to Eqns.
23, 24 and 26 the Lagrange multipliers µ1 and µ2 are non-zero only in regions
where the corresponding bounding constraint on A is active. We also note that
when Al < A < Au, both µ1 and µ2 are zero. This situation becomes identical
to the unbounded optimization problem stated in Section 1.2. In this case, we
know from our earlier solution for A (Eqn. 12) that it decreases linearly. Hence
we conclude that the only possible form of A is as shown in Fig. 2, where x1

and x2 are such that 0 ≤ x1 < x2 ≤ L.

Figure 2: Form of A(x)

1.4 Solving the bounded optimization problem

We treat each of the three regions separately and use the boundary conditions
as well as continuity at the interfaces in order to evaluate the constants in the
solution. For simplicity, we solve the optimization problem for the special case
of a constant load distribution p(x) = p0.
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Case I 0 ≤ x ≤ x1 AI = Au ⇒ µ1 = 0 & µ2 > 0
From Eqn. 15 we get

p0 + EAuu′′ = 0 ⇒ uI = − p0

2EAu
x2 + C1x + C2 (27)

Case II x1 ≤ x ≤ x2 Au > AII > Al ⇒ µ1 = 0 & µ2 = 0
From Eqn. 22 we get

uII =

√

Λ

E
x + C3 (28)

Substituting this into Eqn. 15 we solve for A

AII = − p0√
ΛE

x + C4 (29)

Case III x2 ≤ x ≤ L AIII = Al ⇒ µ1 > 0 & µ2 = 0
From Eqn. 15 we get

p0 + EAlu
′′ = 0 ⇒ uIII = − p0

2EAl

x2 + C5x + C6 (30)

Boundary conditions To evaluate the unknown constants (C1-C6, x1 and
x2) in the solution, we use the boundary conditions at the two ends of the bar
and the continuity of u, u′ and A at x1 & x2. We also use the original volume
constraint equation in order to evaluate the Lagrange multiplier Λ. The bound-
ary conditions used correspond to those for a normal fixed-free bar.

I uI(0) = 0 ⇒ C2 = 0

II uIII′(L) = 0 ⇒ C5 =
p0 L

E Al

III uII′(x2) = uIII′(x2) ⇒
√

Λ

E
=

p0 (L − x2)

E Al

⇒ x2 = L − Al

√
ΛE

p0

IV AII(x1) = Au ⇒ C4 = Au +
p0 x1√

ΛE

V AII(x2) = Al ⇒ Au +
p0(x1 − x2)√

ΛE
= Al

⇒ x1 = L − Au
√

ΛE

p0

VI uI′(x1) = uII′(x1) ⇒ C1 =
p0x1

EAu
+

√

Λ

E
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VII uI(x1) = uII(x1) ⇒ C3 = C1x1 −
p0x

2
1

2EAu
− x1

√

Λ

E
=

p0x
2
1

2EAu

VIII uII(x2) = uIII(x2)

⇒ C6 = x2

√

Λ

E
+ C3 +

p0x
2
2

2EAl

= x2

√

Λ

E
+

p0

2E

(

x2
1

Au
+

x2
2

Al

)

Thus the solution of the optimization problem is given by

u(x) =



















p0

EAu

(

x1 x − x2

2

)

+
√

Λ
E

x 0 ≤ x ≤ x1
√

Λ
E

+
p0x2

1

2EAu x1 ≤ x ≤ x2

x2

√

Λ
E

+ p0

2E

{

x2

1

Au +
(x2

2
−x2)
Al

}

x2 ≤ x ≤ L

(31)

A(x) =











Au 0 ≤ x ≤ x1

Au + p0(x1−x)√
ΛE

x1 ≤ x ≤ x2

Al x2 ≤ x ≤ L

(32)

where Λ is evaluated by substituting A(x) in the resource constraint2 Eqn. 14
as follows

V ∗ = Au x1 +

x2
∫

x1

{

Au +
p0(x1 − x)√

ΛE

}

dx + Al(L − x2)

= (Au − Al)x2 + Al L +
p0√
ΛE

{

x1 x2 − (
x2

2

2
+

x2
1

2
)

}

= (Au − Al)x2 + Al L − p0

2
√

ΛE
(x2 − x1)

2

= Au L −
√

ΛE

2p0

(

Au2 − Al
2
)

⇒ Λ =
1

E

[

2p0(A
u L − V ∗)

Au2 − Al
2

]2

(33)

2Note that the resource constraint inequality now becomes an equation. Since we are

minimizing mean compliance, the stiffest bar will have the maximum possible volume. Hence

the volume constraint will always be active. Also note that from Eqn. 25, Λ > 0.
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