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ABSTRACT

Multicriteria formulations that have been reported pre-
viously in topology design of compliant mechanisms address
flexibility and stiffness issues simultaneously and aim to attain
an optimal balance between these two conflicting attributes. Such
techniques are successtul in indirectly controlling the local stress
levels by constraining the input displacement. Individual control
on the conflicting objectives is often difficult to achieve with
these flexibility-stiffness formulations. Resultant topologies may
sometimes be overly stiff, and there is no guarantee against fail-
ure. Local stresses may exceed the permissible yield strength of
the constituting material in such designs. In this article, local fail-
ure conditions relating to stress constraints are incorporated in
topology optimization algorithms to obtain compliant and strong
designs. Quality functions are employed to impose stress con-
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Saxena and Ananthasuresh [6] generalized the measures for both the flexi-
bility and stiffness of a continuum as monotonic functions of the output dis-
placement and strain energy, respectively, and derived a structural property for
optimal compliant topologies with the linear combination and ratio multicriteria
formulations. The property states that for a compliant topology to be optimaliy
flexible and stiff, the ratio of the mutual strain energy and strain energy densities
is uniform throughout the continuum but for portions that are otherwise bounded
by upper and lower bounds on the design variables. This property was used in
the optimality criteria setting to resize the design variables. It was also noted
that the flexibility-stiffness multicriteria formulations are often nonconvex, and
therefore a robust one-variable search was incorporated to make the algorithm
reliable and robust.

Another optimality criteria method to design flexible-stiff compliant topol-
ogies was by Canfield and Frecker [10], who employed a resource constraint in
the optimization statement. A formulation similar to the flexibility-stiffness
scheme was proposed by Sigmund [5], who employed a constraint on the input
displacement while maximizing the output deformation.

A. Compliant and Strong

The strength of a part is its ability to prevent failure when subjected to
external loads. Both the geometry and material properties determine the strength
of a part. Numerous theories predicting failure for ductile and brittle materials
are well established in engineering design practice, a few being the Rankine,
Tresca, and von Mises distortion energy theories [11]. Rankine theory, applica-
ble mostly to brittle materials, states that failure occurs when the maximum
principal stress in a continuum exceeds the yield stress of the material; for
ductile materials, Tresca theory predicts failure when the maximum shear stress
exceeds the yield limit. The most commonly used theory is the distortion energy
theory, which postulates that failure occurs when the von Mises stress exceeds
the yield strength of the material.

From the design perspective, given the magnitudes of the external loads
applied, the part geometry and the material properties should be appropriately
chosen to restrict the local stress levels within the yield stress. Such designs can
be determined using indirect approaches, for instance, by maximizing the stiff-
ness (or equivalently minimizing the strain energy) or by employing direct meth-
ods, that is, by incorporating stress constraints in the optimization statement.
Minimization of strain energy is sought mainly when the primary intent is to
design structures for minimal deformation, for instance, overpasses, skyscrapers,
and dams. The outcome of the strain energy minimization is the restrained over-
all displacement field that indirectly restrains stresses, but not necessarily to
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straints on retained material, ignoring nonexisting regions in the
design domain. Stress constraints are further relaxed to regularize
the design space to help the mathematical programming algo-
rithms based on the Karush-Kuhn-Tucker conditions yield
improved solutions. Examples are solved to corroborate the solu-
tions for failure-free compliant topologies that are much im-
proved in comparison to those obtained using flexibility-stiffness
multicriteria objectives.

I. INTRODUCTION

Numerous advantages associated with compliant mechanisms [1,2] re-
cently have motivated researchers toward their design. An approach to designing
monolithic compliant mechanisms is their topology synthesis [3—6], which seeks
an optimal material distribution over a specified design region, called the design
domain, for prescribed functional performance, that is, their ability to transmit
motion and/or forces solely using the elastic deformation of the constituting
members. Topology design of compliant mechanisms has been accomplished in
the past by using flexibility-stiffness multicriteria formulations. These formula-
tions intend an optimal balance between the flexibility and stiffness in the result-
ing continua to obtain the force/motion transmission capabilities.

Ananthasuresh [3] quantified the flexibility of a compliant continuum as
the output displacement and used strain energy as a metric for its stiffness.
The larger the output displacement, the more flexible is the optimal continuum;
similarly, the smaller the strain energy, the stiffer it is.

To facilitate the use of Euler-Lagrange principles of variational calculus,
Ananthasuresh [3] employed the virtual work method to compute the output
displacement as the mutual strain energy [7]. For optimal simultaneous flexibil-
ity and stiffness of a compliant continuum, he proposed a multicriteria scheme
to optimize a weighted linear combination of the two objectives.

An improved objective of maximizing the ratio of the output displacement
and strain energy was proposed by Frecker et al. [4]. Frecker et al. [8] further
suggested a two-stage procedure for optimal topology design in which, in the
first stage, an optimal topology was obtained using the ratio formulation and
was improved subsequently using the optimality criteria method in which the
strain energy density was made uniform throughout the continuum.

Saxena and Ananthasuresh [9] addressed the flexibility, stiffness, and me-
chanical advantage aspects of a compliant continuum simultaneously by propos-
ing an energy formulation. Here, the flexibility of the continuum was modeled
as the energy stored in the spring that models the output forces or, equivalently,
the square of the output deformation.
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plished by either increasing the cross-sectional area bz, which makes the beam
stiffer, or by decreasing the elastic modulus E, consequently making it compli-
ant. Making the area of cross section of the beam variable along the length leads
to more possibilities of creating compliant and strong designs.

Maximizing stiffness in the flexibility-stiffness multicriteria formulations
when designing compliant mechanisms is not appropriate for two reasons. First,
strain energy minimization interferes directly with the primary design intent of
maximizing the flexibility of a compliant continuum as it leads to a more re-
stricted overall deformation field. Consequently, the optimal compliant contin-
uum may be overly stiff. Second, minimizing the strain energy alone fails to
account for the local failure, which is essential in dealing with elastic members
undergoing large deformation. A more direct approach of achieving flexibility
while simultaneously addressing local failure issues is by maximizing the output
deformation while restricting the local stresses below their yield limits. In other
words, compliant and strong designs are deemed more appropriate than opti-
mally flexible and stiff designs.

In this article, to obtain compliant and strong (failure-free) designs, local
failure issues of monolithic compliant mechanisms. are addressed by employing
stress constraints in their topology design. Section Il describes the problem
statement of compliant mechanisms with stress constraints. Section IIT is a brief
review of relevant work on topology optimization of stiff structures with stress
constraints followed by its extension to a compliant topology design. Numerical
difficulties with the implementation of stress constraints are noted and avoided
using the quality functions and stress constraint relaxation. In the subsequent
sections, three synthesis examples for compliant mechanisms are discussed and
compared with solutions obtained using existing multicriteria formulations. Fi-
nally, a fully stressed design approach based on an optimality criteria is incorpo-
rated to render the resultant topologies manufacturable.

II. PROBLEM STATEMENT

Consider an arbitrary design domain with generic loading and boundary
conditions shown in Fig. 2. P, is the point of output deformation along the
prescribed direction. A spring of constant k, models the work piece at the output
port. For linear finite-element models, the output deformation or the mutual
strain energy MSE can be computed using the unit dummy load method [15] as

 MSE = V'KU 3)

with
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levels below their upper bound unless a stress constraint is .applied. There is,
however, another way of using compliant structures such as in leaves and thin
tree branches, marine algae [12], and deepwater offshore structures that are used
in oil and natural gas industry [13] these are able to red}lce local stresses when
subjected to large water or wind currents. These cprpphant st@ctures preferbt(i
comply with the external loads, allowing large rigid-body dlsplac.:emel.lts' u
minimal local distortions, thus maintaining the stresses below the }’ICld‘llmlt.
The aforementioned stress reduction phenomenon can be explained er
both stiff and compliant structures using the cantilever be-zam example sbown in
Fig. 1. For a beam loaded with a point tip force. P, elastic modulus E, in-plane
width b, and out-of-plane thickness 7, the maximum stress Op,, occurs at the

fixed end, which is given as
o = 6a PIth’ (1)

where a is the horizontal distance from the fixed end to the deflected tip and is
given using the large deformation Euler-Lagrange beam theory as [1]

E@ J’eo cos 6 )
24P "0 ~/sin @ — sin 6

with 6, as the slope at the tip (see [14] for derivation details). Fpr given tip load
P, G, can be reduced by lowering al(1h*). By using Eq. 2, this can be accom-

E —] O b
* L »\ —~ik-t

nstrating modes of stress reduction

Figure 1. A simple cantilever beam example demo
in stiff and compliant structures.
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V< v#
X < x <X, i=1,....N

where o, is the allowable stress, S, is the yield strength with a safety factor SF,
N is the total number of elements in domain representation, V* is an upper
bound on the continuum volume V, and x; and x, are lower and upper bounds
on design variables x; (i =1, ..., N), respectively. These variables can be related
to element thicknesses or widths or their Young’s moduli. Design variables
assuming the lower bound are considered absent from the topology. Even
though the lower bound should ideally be zero, it is taken as a small positive
quantity to avoid singularities in structural stiffness.

III. MODELING STRENGTH CONSTRAINTS

Stress constraints have been employed in recent work on topology optimi-
zation of stiff structures [16—19] and size optimization of compliant mechanisms
[20]. Kirsch [16] and Cheng and Jiang [17] performed topology optimization
using a ground structure of truss elements and found that, for a bar element, the
axial stress asymptotically approaches a nonzero finite value as the element
approaches its nonexisting state. As explained by Cheng and Jiang [17], the
nodes of a nonexisting element may be shared by those existing in the mesh.

Consider, for instance, a nonexisting element shown using dotted lines in
a mesh of truss elements (solid lines) in Fig. 3. Unless otherwise constrained
by zero displacement boundary conditions, nodes ¢ and & will undergo finite
deformations due to the applied load P. The stress o, in the nonexisting element
e will be a nonzero finite value given as

axial axial

o, = E‘b‘” 6
L, (6)

axial axial

where L, is the element length, E, is its elastic modulus, and i, = and u, = are
the deformations of nodes a and b, respectively, along the length of the element.
Duysinx and Bendsge [18] noted similar asymptotic behavior of local micro-
scopic stresses for rank 2 microstructures and plane stress design parameteriza-
tion. Kirsch [16] referred to this phenomenon as a singularity because the ele-
ment stresses assume nonzero values at their nonexisting states, which are
situations in which stress values are expected to vanish. Such degeneracies cre-
ate complex design regions comprising several unconnected parts. The design
contains disconnected segments for which the constraint qualification for the
existence of a feasible minimum is not satisfied [18]. In such cases, the optimi-
zation algorithms based on Karush-Kuhn-Tucker conditions are unable to reach
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Design domain and problem specifications.

Figure 2.

KU=F,

KV = Fd
where U is the displacement field
loads, K is the structural stiffness

the load vector F,, which is the unit
the prescribed output deformation. The stress

G

due to the load vector F, comprising applied
matrix, and V is the displacement field Que to
dummy load that acts along the dl.rectlon of
o, in element i can be written as

c.=DBu, &)

Here, D, is the elastic constitutive matrix, B; is the strain dllsplacgrrslzmlt1
matrix, and u, is the nodal deformation of the. ith element. For togo ;)g;‘)l/axi:mig; i
of compliant mechanisms, the flexibility requ1rerpent can be plc))seima e
ing the output deformation, while strength requlremeptsdczfln thee " [:imal ot
an upper bound on stresses for elements that are retamned 1n p

ogy. That is,
Maximize: MSE

subject to
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Xi — X; .
=, i=1,...,N @)
Xy = X

where p; = 0 signifies a nonexisting ith element and existing otherwise (p; > 0).
Quality functions g; can be chosen to depend monotonically on element densities
such that

=0 forp;=0
= } 8
1 f(p)>0 for p; >0 ®)

Some candidate choices for g; are exponential or polynomial functions
[17], that is, g;=(e" — 1) or ¢;=p;. Polynomial functions are chosen in this
work because they offer additional flexibility in choosing weights for stress
constraints in selecting parameter n. On multiplying both sides of the stress
constraints with respective quality functions and rearranging, we get
loil _

n
i

110, i=1,...,N 9

a

Stress relaxation, proposed by Cheng and Guo [21] and used by Duysinx
and Bendsge [18], can be employed to circumvent the degeneracies due to the
asymptotic nature of stress constraints to aid in easy removal of elements ap-
proaching their nonexisting state. Expressing Eq. 9 in the relaxed form for a
small relaxation parameter €, we have

nlcfi
A
o[ 2

a

<g, i=1,...,N (10)

By analyzing its arranged form, that is,

€
1+—

n
i

|Gi| S 0a(relz\xed) =Cu ) i = 17 Y N (11)

it can be observed that, for nonzero densities and positive €, stress values are
not allowed to exceed their redefined allowable limit, G = C.(1 + €/p;),
which is only slightly larger than the allowable stress o, if € is small and » is
chosen properly (Fig. 4). However, for densities p; approaching zero, the upper
bounds on local stresses approach infinity. In other words, the stress constraints
on elements approaching their nonexisting state are inactive. e-Relaxation thus
permits element densities to approach their lower bound smoothly by relaxing
the respective stress constraints, thus yielding a regular design space with well-
placed optima that can be found with classical mathematical programming algo-
rithms. Cheng and Guo [21] mentioned that the constraint relaxation creates
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Figure 3. Asymptotic behavior of stresses in a bar element in its nonexisting state.

the optima located in these regions. This implies that, in topology optimization,
some low-density regions are not removedtotally.

To overcome these irregularities, Kirsch [16]} suggested employing upper
limits on internal forces instead of element stresses. For a truss element, the
internal force is a product of the stress and its area of cross section. When the
cross-sectional area approaches zero or the element approaches its nonexist-
ing state, the internal force approaches zero. Cheng and Jiang [17] generalized
this approach by proposing to use the quality functions in conjunction with the
stress constraints. Like the cross-sectional area of the truss element, the quality
functions for individual elements are chosen as continuous, monotonic, and pos-
itive functions in the respective design variables and have a null (zero) value for
variables attaining their lower limits. These quality functions may be regarded as
respective weights or switch functions for stress constraints. For elements that
are retained in the topology, these weights are large, implying that the failure
criteria are strict for elements that are significant in the topology. For elements
that are near their nonexisting state, the failure criteria are relaxed by reducing
the weights to help in smooth disappearance of such elements from the to-

pology.
The models described above can be adapted for the topology synthesis of
compliant mechanisms. First, element densities p; ((=1,... ,N) can be ex-

pressed in terms of design variables x; (i=1,...,N) as
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Figure 5. Solid curve: Relaxed upper bound on stress, 0,(1 + €/p}) plotted against p,.
Dashed curve: Relaxed upper bound o,(1 + &(1 — p,)/p?). €=0.01 and ©,= 5.

(Lol o,
P.(G 1/ <e(l-p)

a

V< v*
X < x < x,, i=1,...,N

Duysinx and Bendsge [18] related the relaxation parameter € to the lower
bound on design variables as x;=¢’ and progressively decreased €. They men-
tioned that choosing a large initial €, and thus the lower bound, allows one to
open degenerate parts to find a single optimum from most initial guesses. A
way to decrease € proposed by Duysinx and Sigmund [22] is to do so each time
the Lagrangian of the objective and constraints satisfies the convergence criteria.
This requires solving the optimization problem iteratively with the solution of
the previous step as the initial for subsequent guess optimization. Both Duysinx
and Bendsge [18] and Duysinx and Sigmund [22] used n = 3 for density-based
plane stress parameterization in concurrence with the penalization parameter for
the element densities.

However, parameter n can be chosen on the basis of the relaxed bound on
the stress Gy (> ©,) desired at a given density value p, bounded by the
interval [0, 1] (see Fig. 4). Following from Egq, 11, for the lowest value of the
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a(relaxed)
o

Figure 4. Relaxed upper bounds on stresses, 6,(1 + &/p}) plotted against p; for different
values of n. In the schematic, € =0.01 and ¢,=35.

continuous point-to-set maps between parameter € and the relaxed design do-

mains, as well as their optimal solution that regularizes the design space.
Duysinx and Sigmund [22] noted that relaxation of the strength constraints

may not be required for element densities p; (i=1, ..., N) closer to unity and

proposed that stresses for such elements be strictly bounded by the allowable

stress G,. Accordingly, Eq. 10 can be modified as follows:

p"(m—l <e(l - py, i=1,...,N (12)

i

u

Figure 5 shows the comparison between the relaxed upper bounds on the
stress with element density. In the figure, the solid curve corresponds to the
model in Eq. 10 with constant relaxation parameter, and the dotted line repre-
sents the relaxed upper bound for the relaxation parameter varying linearly with
the element density as in Eq. 12. With relaxation incorporated with stress con-
straints, the optimization problem for compliant mechanisms can be posed as
follows:

Maximize: MSE

subject to:



=N

n I Aout

(f) maximum stress = 38.3 N/mm?  (g) maximum stress = 35.2 N/mm?

“igure 6. (a) Design specifications for the displacement inverter. (b)—(g) Optimal to-
ologies for n varying from 1 to 6.
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relaxation parameter € (if it is reduced periodically as described above), n can
be computed as follows:

cu(relaxed) _ 1)

log(e) ~ log

n= 13
log(p,) 4
Note that, in maximizing the flexibility (or the output deformation) in the topol-
ogy design of compliant mechanisms, many element densities are expected to
be close to their lower bound, but the corresponding elements may still be sig-
nificant and thus retained in the optimal topology. The stresses in such elements
may be larger than their allowable limit 6, owing to the artificial relaxation of
their upper bounds achieved by using the quality functions and the relaxation
parameter €. To avoid the stress levels in these elements from exceeding their
yield limit S,, ¢, can be artificially chosen to be much smaller than S, (by a
factor of 5 or more). This conservative approach will ensure that most of the
existing elements have stresses below S,. With appropriate resizing following
the topology optimization procedure, the stress levels can be further regulated
with the yield limit as the upper bound on stresses, will be explained below.

In this article, synthesis examples for displacement inverter, compliant
crimper, and pliers mechanisms are studied. Frame elements were chosen for
design parameterization for their simplicity yet nontriviality in continuum repre-
sentation and implementation. In-plane widths are regarded as design variables
for elements. Stresses in frame elements also depict irregularities mentioned
above in that they approach the nonzero axial stress value at zero densities and
behave similarly to bar elements. Thus, the model to handle stress constraints
developed in this section is applicable to frame elements as well. Young’s mod-
ulus for elements was chosen as 2 x 10° N/mm’, yield stress S, for elements was
50 N/mm’, and the allowable stress G, was taken as 10 N/mm’. An upper bound
of 4 mm was imposed on design variables of frame elements of constant thick-
ness 2 mm. A uniform initial guess equal to half the upper bound on the design
variables was employed in the synthesis examples. The examples were obtained
using sequential quadratic programming in Matlab [23] and were studied for
constant and progressively varying stress relaxation parameter and different val-
ues of parameter n.

IV. SYNTHESIS EXAMPLES
A. Displacement Inverter

Figure 6a shows the design domain of dimensions 120 mm x 120 mm for
a displacement inverter. The rectangular region is pinned at four corners and
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(©) (d)

Figure 7. (a) Design specifications for the compliant crimper. (b) Optimal topology
for nzvl and volume constraint of 30%. (c) Optimal topology for n=3 and volume
constraint of 30%. (d) Optimal topology for n =3 and no volume constraint.

The optimal topology for n =1 is shown in Fig. 7b, for which the output
deformation was maximized to 14.5 mm. A volume constraint of 30% was im-
posed for this design.

Figures 7c¢ and 7d show optimal topologies for n =3, with 30% volume
constraint applied in the former and no resource constraint applied in the latter.
The output displacements for topologies in Figs. 7c and 7d were maximized to
45.2 mm and 41.9 mm, respectively. Large values of optimal output displace-
m.ent§ are due to thin elements in the topologies allowed by the relaxed failure
criteria.

For the three optimal solutions, the relaxation parameter € was held fixed
at 0.01, and the lower bound on the design variables was taken to be 10~ mm.
The three topologies are quite well defined, although in the topology in Fig. 7b
some elements, especially in the lower right corner, were retained that restrict
the flexibility of the continuum by not allowing sufficient input deformation,
consequently making it stiffer. For n =3 (Figs. 7c and 7d), resultant topoiogies

- were more flexible. Again, for large n, stress levels in some thin elements ex-
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discretized using a ground structure of frame elements as shown. The input load
F,, of 20 N was applied at the center node on the left edge, and the deformation
of the center node on the right edge was desired to be maximized. A spring
constant of 0.01 N/mm was used at the output port. No volume constraint was
imposed in this example. The relaxation parameter £ was gradually reduced
from 107 to 10~ by a factor of 5, and in each optimization step, the lower
bound x; = &’ was imposed on in-plane element widths.

Figures 6b—-6g show optimal topologies of displacement inverter for n
varying from 1 to 6. The solid lines in these figures show the undeformed
configuration with relative element in-plane widths, while the normalized de-
formed configuration is shown using dotted lines. For n =1, the optimal topol-
ogy is shown in Fig. 6b, for which the output displacement is maximized to
0.88 mm. As n increases from 2 to 6, the corresponding output displacements
are maximized to 106.8 mm, 114.7 mm, 114.7 mm, 114.8 mm, and 114.8 mm,
respectively.

The optimal topologies are shown in Figs. 6¢c-6g. As is apparent in these
figures, with increasing n, the optimal topologies became more flexible and
better defined. This is because the unfavorabie element densities were pushed to
their lower bounds more quickly owing to the polynomial nature of the quality
functions. The high values of output displacements in Figs. 6c-6g can be attrib-
uted to the presence of very thin elements in the corresponding topologies.

Note that, for such elements, the failure criteria were not very strict. This
is expected because of the relaxation of the upper bounds on local stresses,
discussed in Section III. Consequently, local stresses were larger than the allow-
able limit of 10 N/mm’. Since 6, was chosen to be much smaller than the yield
strength in anticipation of the stress relaxation for thin elements, the local
stresses were still bounded by the yield strength. The example also shows that
increasing n did result in more flexible and clear topologies. However, after a
certain value (n>3 in this example), convergence in the optimal topologies
could be seen.

B. A Compliant Crimper

The symmetric half of the design region for the crimper is depicted in
Fig. 7a. The region is rectangular, 150 mm long and 50 mm wide. The left edge
of the domain was fixed, while the bottom edge was on a roller support due to
symmetry. A vertically downward input force of 20 N was applied at the top
right corner, which is indicated by a dark arrow. The gray arrow pointing toward
the left at the bottom edge depicts the location and direction of the output dis-
placement to be maximized. An output spring of constant 0.01 N/mm was used
to model the reaction load from the work piece.
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(e)

Figure 9. (a) Design specifications for the compliant pliers. (b) Optimal topology for
n=1 and volume constraint of 30%. (c) Optimal topology for n =3 and volume con-

straint of 30%. (d) Optimal topology for n=3 and no volume constraint. (e) Topology
for n=4 and no volume constraint.

. The aforementioned pliers designs were obtained for fixed € = 0.01 and x =
10 mm. The problem was solved with the relaxation parameter varying from
0.1 to 10™ and the lower limit varying as €* in each optimization step. In this
case, n= 3 was used without the volume constraint. Optimal topology is shown
- In Fig. 10, in which the output deformation was maximized to 530 mm and
compared better with the solution depicted in Fig. 9d.
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ceeded their allowable limit of 10 N/mm’, but were lower than the prescribed
limit of 50 N/mm’.

The crimper example was also solved with n = 3 and no volume constraint
for varying €. Here, the relaxation parameter was progressively decreased in
multiple optimization steps from 107" to 107, The optimal solution is shown in
Fig. 8, in which the output deformation was maximized to 44.8 mm. Stress
levels were contained within the yield limit. The resultant solution is better than
the solution shown in Fig. 7d, suggesting that a progressive decrease in the
relaxation parameter generates better topologies, notwithstanding the higher
computational costs.

C. Compliant Pliers

A rectar;gular region of 150 mm by 50 mm, which is the symmetric half
of the design domain, was used for synthesis of compliant pliers. The region
was discretized as shown in Fig. 9a, with its bottom edge fixed. Input forces of
2 N and —20 N, indicated by dark arrows, were applied for actuation along the
horizontal and vertical directions at the top left corner of the domain. The output
deformation at the bottom right node was desired to be maximized along the
direction at —45° from the horizontal. This is shown by two gray arrows at the
output port. Output springs of 0.01 N/mm and 0.1 N/mm were employed along
the vertical and horizontal directions, respectively. Owing to uneven spring con-
stants, the output port was expected to deform more along the vertically down-
ward direction than toward the right. Figure 9b shows the optimal topology for
n =1, for which the solution was slightly ambiguous, although the objective was
maximized to 15.4 mm. Much clearer topologies were obtained for » =3 in Fig.
9¢ with 30% volume constraint and in Figs. 9d and 9¢ for n=3 and n=4,
respectively, with no volume constraint. The output deformations were maxi-
mized to 85.1 mm, 68.3 mm, and 62.5 mm, respectively.

Figure 8. Optimal topology for compliant crimper for # = 3 with no volume constraint.
€ is progressively reduced from 0.1 to 107
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proach [6], for which the deformation at the output port was 40.6 mm, and
element stresses were less than the yield strength. When compared with Fig. 8,
this optimal mechanism was equally flexible and failure free for prescribed load-
ing conditions. This example suggests that the individual dominance of flexibil-
ity and stiffness objectives depends on the choice of the measuring functions.
Though minimizing the strain energy does help in restricting the stress
levels, flexibility-stiffness solutions do not always guarantee designs against
failure, as is demonstrated in the subsequent example. For compliant pliers, the
resultant topology obtained using the energy formulation is shown in Fig. 12.
At optimum, output deformation was 82 mm, and the strain energy was 475.6
N-mm. Maximum stress levels exceed the yield strength by fivefold, whereas

the resultant mechanism was less flexible when compared with the solution in
Fig. 10.

VI. DISCUSSION

Many times, thin and nonmanufacturable elements may be present in the
optimal topology obtained using stress constraints. Local stresses in thin ele-
ments may exceed the yield strength, depending on the choice of parameter n,
the stress relaxation parameter €, and the allowable stress limit G,. Furthermore,
the quality functions and relaxation parameter only help to ignore the local
stresses in nonexisting, but physically present, elements in the mesh. Such ele-
ments may be highly stressed and may share the applied loads to some extent.
When removed, these stresses may be transferred to existing elements, making
their stress levels higher.

To further restrain these stresses within their yield limit and ensure that
the minimum element size conforms with the manufacturing limit, an optimality
criteria method such as fully stressed design [24] may be incorporated. Assum-
ing that local stresses are inversely proportional to their design variables, the
element size may be increased iteratively by a factor equal to the ratio of the

Figure 12. Optimal topology for compliant pliers with the energy formulation.
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Figure 10. Optimal topology for compliant pliers for n =3 with no volume constraint.
g is progressively reduced from 0.1 to 107,

V. OPTIMAL TOPOLOGY COMPARISON WITH
FLEXIBILITY-STIFFNESS FORMULATIONS

Optimal topologies were obtained for compliant crimper and pliers mecha-
nisms for specifications in Figs. 7a and 9a using the flexibility-stiffness formula-
tion proposed by Frecker et al. [4] and Saxena and Ananthasuresh [6]. The
topologies were obtained without the volume constraint. Figure 11a sh0w§ the
topology of an optimal crimper mechanism obtained by maximizing the ratio of
the output deformation and strain energy. The mutual energy was maximized to
4.2 mm, whereas the strain energy was minimized to 9.2 N-mm. The maximum
stress was found to be less than the yield strength (50 N/mm’).

Even though the mechanism was not designed against failure in this exam-
ple, the stresses were restricted by indirectly constraining the input deformation
by minimizing the mean compliance. However, on comparing the ﬂexibility. of
the optimal crimpers in Figs. 8 and 11a, it is found that the output deformation
of the mechanism obtained by using stress constraints is about 10 times more
for the design in Fig. 8 than the design in Fig. 11a.

A crimper mechanism was also generated using the energy-based ap-

Figure 11.  Optimal topology for compliant crimpers. (a) Ratio formulation. (b) Energy
formulation.
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ables is not necessary for the fully stressed design procedure as it aims to mini-
mize the continuum volume while rendering the constituting members in the
topology fully stressed.

Further reduction in stresses below the yield strength is possible by either
having no upper bound on element widths or using out-of-plane thicknesses
larger than 2 mm. For a thickness of 4 mm, the maximum stress was reduced
to 27.7 N/mm’. In the case of pliers, stress reduction was from 690 N/mm’ to
14 N/mm’, which is less than the yield strength. The output deformation after
resizing was 4.6 mm. Resizing was also performed on the topology of Fig. 12,
obtained using the energy formulation in which the maximum stress was re-
duced from 229 N/mm’ to 26.1 N/mm’, yielding the output deformation to 3.1
mm. This is smaller than the 4.6 mm obtained as output deformation for the
resized topology in Fig. 13b. Note that all the examples in this article were
solved using linear finite-element models in which the stress estimate is more
conservative than when the corresponding geometrically nonlinear finite ele-
ments are used.

VII. CONCLUSIONS

Flexibility-stiffness formulations do not directly address the local failure
issues in the topology design of compliant mechanisms. Furthermore, if flexibil-
ity and stiffness measures are not properly chosen, optimal compliant topologies
can be overly stiff. It then becomes imperative to employ an upper bound (the
allowable limit) on local stresses for existing elements in the topology. Local
stresses for different design parameterization, including truss, frame, and plane
stress elements, manifest some irregularities in that they asymptotically ap-
proach a nonzero finite value when the corresponding element densities ap-
proach a null value.

Quality functions are employed to help impose stress constraints only for
nonzero element densities in the optimization procedure. Stress constraints are
also relaxed by a known parameter to regularize the design space, thus helping
the mathematical programming algorithms approach more meaningful topolo-
gies.

Numerous topology design examples for compliant mechanisms were
solved in this paper with stress constraints and were compared with correspond-
ing solutions obtained using the flexibility-stiffness multicriteria formulations.
Topologies obtained using strength considerations were found to be more flexi-
ble, with local stress levels contained within the specified yield limit compared
to those obtained using prior flexibility-stiffness formulations.
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local stress to the yield stress if the former is greater. Appropriate checks may
then be performed in each iteration to ensure that the element sizes lie within
the limits defined by the manufacturing constraint and their upper bound.

Fully stressed designs were obtained for topologies of compliant crlmper
and pliers in Figs. 8 and 10, respectively. The yield stress of 50 N/mm’ was
used with a minimum element in-plane width (manufacturing limit) of 2 mm.
The upper bound of 5 mm was used on the element sizes. Figs. 13a and 13b
show the fully stressed designs of compliant crimper and pliers, respectlvely
For the crlmper example, the maximum stress was reduced from 1711 N/mm’
to 58.4 N/mm”. An initially high value of the maximum stress may be because
the nonexisting elements may be highly stressed and sharing a large part of ap-
plied loads. The resultant value was still larger than the yield strength and can
be attributed to the lower values of the element thickness and/or the upper bound
used on the element in-plane widths. Ideally, the upper bound on design vari-

(© (d)

Figure 13. Fully stressed designs of compliant (a) crimper and (b) pliers and their
prototypes (c) and (d), respectively.
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