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ABSTRACT 
In this paper, we present a novel formulation for performing 
topology optimization of electrostatically actuated constrained 
elastic structures. We propose a new electrostatic-elastic 
formulation that uses the leaky capacitor model and material 
interpolation to define the material state at every point of a 
given design domain continuously between conductor and void 
states. The new formulation accurately captures the physical 
behavior when the material in between a conductor and a void 
is present during the iterative process of topology optimization. 
The method then uses the optimality criteria method to solve 
the optimization problem by iteratively pushing the state of the 
domain towards that of a conductor or a void in the appropriate 
regions. We present examples to illustrate the ability of the 
method in creating the stiffest structure under electrostatic force 
for different boundary conditions.  

INTRODUCTION 
The use of electrostatic force for actuation in microsystems is 
desirable because of the large amplitudes that are achieved at 
the micron scale as well as the ease of manufacturing and 
integration along with electronic components. In 
microelectromechanical systems (MEMS), an electrostatic 
force that is attractive in nature deforms the mechanical 
structure. The potential difference between different conductors 
determines the magnitude of force, which in turn controls the 
equilibrium positions of the constrained elastic structures of the 
conductors. The fact that silicon can be used for generating 
both the electrostatic force as well as the mechanical restoring 
force makes it ideal for fabricating low cost devices using any 
of the standard micromachining methods.  

To meet the growing demand for electrostatic actuators in 
microsystems, it is important that synthesis methods are 
1 

1 Sep 2012 to 130.126.32.13. Redistribution subject to ASM
developed in order to automate or aid the process of generating 
new designs. Synthesis techniques are also important from the 
point of view of generating complex designs that are not easily 
visualized through intuition. Among the many popular design 
methods, topology optimization is one such technique that is 
gaining popularity due to its ability to adapt to situations that 
involve many different physical phenomena [1].  

Topology optimization refers to the synthesis of structures 
in a given domain so as to optimize an objective function 
subject to one or more constraints. For instance, a volume 
constraint is usually used to limit the amount of material 
available to the optimization algorithm while generating 
structures. Topology optimization is quite powerful because it 
requires only essential information from the user and is able to 
generate optimal designs that are often readily manufacturable. 
This is particularly true in the case of planar designs (such as 
those used in microsystems) which may be easily fabricated by 
choosing appropriate mask layouts without too much additional 
cost. 

There are a number of methods for solving problems of 
topology optimization. One popular approach among these that 
we shall be using here is the SIMP (Simple Isotropic Material 
with Penalization) approach [2]. In this method, we discretize 
the domain into a set of finite elements and define a material 
interpolation parameter for each of these elements. This 
parameter, which takes values between zero and one, is raised 
to some power and is multiplied with the material property 
values to interpolate the material properties throughout the 
domain in a continuous manner. This continuous interpolation 
between material and no-material calls for accurate modeling of 
the physics of the problem under intermediate, interpolated 
state of material(s). This paper deals with one such problem in 
topology optimization. 
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1
PT The dielectric permittivity is exactly unity only in vaccum; however, the 

value in air and most metallic conductors is only slightly greater than unity. 
Topology optimization has been applied to design 
situations that involve many diverse physical phenomena like 
those present in mechanical structures, electrothermal actuators, 
piezoelectric actuators and even optical media like photonic 
crystals [3]. However, for electrostatically actuated structures, 
topology optimization has been implemented only recently [4], 
possibly due to the lack of a physical model to smoothly 
interpolate the material state from a conductor to a dielectric or 
a void. In this paper, we propose an accurate formulation for a 
material interpolation model that uses the so-called leaky 
capacitor model to provide a physical basis for this 
interpolation. In the following sections, we shall explain this 
model and discuss how it may be applied to topology 
optimization to yield optimal structures.  

In the next section, we begin with a brief description of the 
electrostatic analysis and force-computation when a material is 
in an intermediate state between a conductor and a void, which 
was discussed in our recent past work [5]. This analysis method 
is combined with the new material interpolation model of this 
paper to lead to topology optimization of electrostatically 
actuated structures.  

BRIEF OVERVIEW OF THE ANALYSIS METHOD 
Consider the domain to be a region that has some finite and 
spatially varying value of conductivity.  In topology 
optimization, the changing material properties of the domain 
are defined in terms of a material interpolation scheme. Let γ  
be such a parameter used for material interpolation. In other 
words, the value of γ  varies spatially in order to interpolate 
material properties between those of a conductor and a void in 
the case of electrostatic analysis. Upon the application of 
electrostatic boundary conditions, when there is “intermediate” 
material we observe a distribution of current flowing through 
the domain due to the finite value of its conductivity. The flow 
of current through this inhomogeneous domain under steady 
state is given by 
 

( ) ( ) 0Vσ⋅ = ⋅ =J∇ ∇ ∇   (1) 
 
where J  is the current density, V  the electrostatic potential 
and ( ), ,x y zσ  the spatially varying value of conductivity that 
ideally varies between infinity (for a conductor) and zero (for 
an insulating dielectric or void).  

In order to model the electrostatic force that is generated in 
actuators, we note that when current flows through an 
inhomogeneous domain, electric charge accumulates at the 
regions of discontinuity giving rise to an electrostatic force. 
This will be a body force at these regions in contrast to familiar 
surface force of electrostatics. In this case, the electrostatic 
force is localized to regions wherever there is a discontinuity in 
either conductivity or permittivity of the medium (see Eq. (2)). 
Using the generalized electrostatic stress tensor [6], we write 
the expression for this force per unit volume esF  as follows.  
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Here eρ  is the free electric charge density, E  the electric field, 

ε  the permittivity and mρ  the mass-density of the material. 
The third term in expression for the body force of electrostatics 
is like a hydrostatic force that is the same in all directions 
inside a dielectric medium. Since we are considering only 
resultant forces on the domain, the third term in Eq. (2) may be 
neglected. Neglecting the third term, the expression becomes 
identical to the force predicted from Maxwell’s electrostatic 
stress tensor. For a detailed discussion of the above, please see 
[6]. 

The electrostatic body force is applied on the mechanical 
structure. The same material interpolation that is used to 
interpolate conductivity is also used to perform the same task 
on the mechanical moduli of the material (e.g., Young’s 
modulus and Poisson’s ratio in isotropic materials). The 
deformation in the mechanical structure is computed using the 
elastostatic governing equation: 

 
( ) es∇⋅ + =S F 0  and boundary conditions. (3) 

 
Here, S  is the stress tensor, which is the product of the 
constitutive elastic modulus tensor and the strain tensor.  

When the material interpolation parameter takes values in 
between its two extreme limits in certain regions, we see that 
these parts partially conduct current and store electrostatic 
energy as well. In lumped modeling, this is known as a leaky 
capacitor model and is represented by a resistor and a capacitor 
in parallel. As the conductivity values in the domain are pushed 
towards the limits (i.e., for piece-wise homogeneous conductor-
void combinations), in the absence of a conducting path across 
the potential difference, we see that the structure resembles an 
ideal capacitive configuration. In this situation, the electrostatic 
force is localized to the interface between the conducting and 
void regions and becomes identical to the electrostatic surface 
force that is found in electrostatic actuators. Thus this model 
allows for the continuous interpolation of electrostatic material 
state between the limits of a conductor and a void. An example 
is shown in Fig. 1. More analysis results are in [5]. 

MATERIAL INTERPOLATION 
In this paper, we interpolate the material state only between two 
cases, i.e. a conductor and a void, while assuming permittivity 
to be unity everywhereTP

1
PT. It must be noted here, that the physical 

model allows for the independent interpolation of dielectric 
permittivity too [5], though we do not make use of that in our 
optimization in this paper. The material interpolation is done in 
the following manner to ensure that regions of high 
Copyright © 2006 by ASME 

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



 

conductivity (i.e. conductors) also comprise the mechanical 
structure with higher elastic moduli when compared with void 
regions. 
 

( )
( )

min max min

min max min

p

p

σ σ σ σ γ

γ

= + −

= + −Y Y Y Y
 (4)

  

 (a)  

(b)  

Figure 1. An analysis result from [5]. Analysis of a 
electrostatically actuated structure in which the 
electrostatic force is used to move a mirrored surface 
vertically without deformation [7] (a) Plot of γ  showing 
undeformed structure modeled using symmetry boundary 
conditions on the left vertical edge (b) Complete 
deformed structure. Arrows indicate the direction and 
magnitude of the electric field. Only mesh elements with 
γ  greater than 0.5 have been shown for clarity.  

  
The quantity Y  in Eq. (4) refers to the constitutive elastic 

modulus tensor, while p  is the penalizing exponent that is 
used to drive the value of γ  towards zero or one. The value of 
p  is normally chosen to be greater than or equal to three in 

order to ensure existence of physical materials with elastic 
moduli that satisfy this power law interpolation (see [8] for a 
detailed discussion). Appropriate lower bounds are chosen for 
the conductivity and the elastic moduli to avoid singularities in 
the stiffness matrices during finite element calculation.  

In practice, the interpolation of conductivity in the manner 
as shown in Eq. (4) leads to improper computation of 
electrostatic force due to numerical errors. We observed that at 
every conductor-void interface, the localized electrostatic force 
slightly shifts towards the side of the void. This results in the 
force acting on the void material of low stiffness rather than the 
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conducting material that has high stiffness. This leads to poor 
computation of deformations. In order to avoid this, we re-
write the interpolation of conductivity as follows. 

 
( )( )min max min

max min
min max

1

1 1 1

pρ ρ ρ ρ γ

σ ρ ρρ σ σ

= + − −

= = =
 (4) 

 

where ρ  is the resistivity of the medium and minσ  and maxσ  
are the bounds of conductivity as defined in Eq. (4). It is easily 
seen that when γ  approaches zero or one, the value of 
conductivity becomes equal to the corresponding bounds. By 
using this alternative interpolation scheme, we circumvent the 
problem of improper calculation of the electrostatic forces. 

 The material interpolation model described in this section 
and the analysis method of the previous section will be used in 
the topology optimization as discussed next. 

THE TOPOLOGY OPTIMIZATION PROBLEM 
The topology optimization problem is stated in terms of the 
new formulation as follows.  
 

( )
( )( )

( ) *

minimize

subject to
0

: V V

es

V on

on

d

γ
φ

µ σ

γ
Ω

⋅ = Ω

⋅ = Ω

Λ Ω ≤∫
λ Y : e u F

: ∇ ∇

: ∇

 (5) 

 
Here φ  is the given objective function to be minimized over 
the domain Ω , e  is the strain tensor, u  is the displacement 
vector, ( )V γ  is the volume density function, *V  is the 
volume allowed by the volume constraint  while µ , λ  and Λ  
are Lagrange multipliers corresponding to the three constraints. 

In this paper, we have solved only for the objective 
function that minimizes the strain energy of a given domain due 
to electrostatic force. Thus, the objective function is given by 

  
( ) ( ): :T dφ

Ω

= Ω∫e u Y e u   (6) 

 
The optimization problem is solved using the optimality 

criteria method in which the widely used heuristic updating 
scheme [9] is used to iteratively modify the design variables.  
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where ( )0m >  is the move-limit, ( )1 2η =  is the damping 
factor and iB  is determined from the optimality criteria 
condition as explained ahead. 

The optimality criterion is derived by performing the 
sensitivity analysis. In order to do this, we write the Lagrangian 
for the entire coupled system of partial differential equations 
given in Eq. (6) and take variation of the Lagrangian with 
respect to the state variables to obtain the adjoint equations 
(Eqs. (10) and (11)). The adjoint equations may be used to 
solve for the Lagrange multipliers µ  and λ , which are then 
substituted in the optimality criteria condition. The entire 
procedure is given below. 

 
( ){ }

( ){ } ( ) *: V Ves

L V d

d d

φ µ σ

γ

Ω

Ω Ω
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⎧ ⎫⎪ ⎪∇ ⋅ − Ω+ Λ Ω−⎨ ⎬
⎪ ⎪⎩ ⎭

∫
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 (8) 
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Ω
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The last equation above is the optimality criterion that 

must be satisfied by the converged solution. We may write Eq. 
(12) alternatively as  

 

0 1i
i i

i

A
A D

D
−

+ Λ = ⇒ =
Λ

 (12) 

 
The quantity on the left hand side of Eq. (13) is defined as iB  
and is used in the heuristic updating scheme explained 
previously in Eq. (8). The numerical implementation details are 
presented in the next section. 

NUMERICAL IMPLEMENTATION 
The above optimization scheme was numerically implemented 
using COMSOL Multiphysics® [10], which was used to 
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perform the finite element analysis and do the computations 
related to the optimality criteria optimization algorithm. 
COMSOL Multiphysics® has the flexibility of a scripting 
language that is similar to the MATLAB® [11] programming 
language. This was used to combine the finite element solver 
with the optimality criteria algorithm in order to solve the 
topology optimization problem. 

In all coupled electrostatic-elastic problems, the 
electrostatic boundary conditions are such that a potential 
difference is applied between two or more different parts of the 
domain boundary. Hence, there are two sets of electrodes such 
that one set is maintained at some finite potential, while the 
other set is grounded. Since the value of γ  in the entire domain 
is initially given a uniform value, there is no discontinuity 
present in the domain and hence there is no electrostatic force. 
This leads to a trivial solution where the optimization algorithm 
does not proceed further, but instead instantly converges 
because the stiffness structure criterion is satisfied.  In order to 
avoid this trivial solution, we manually remove a small portion 
from the design domain around all the electrodes from one of 
the two sets. Removing a portion from the design domain 
means that the optimization algorithm will not be allowed to 
change the value of γ  in that region. Furthermore, we 
manually set the value of γ  in these regions to form the 
electrodes of finite size surrounded by the void region on all 
the sides. This ensures that a meaningful solution is found by 
the algorithm.  

Since the electrostatic analysis is at the core of the entire 
optimization algorithm, it is important to ensure that the 
electrostatic force is computed properly. Using the leaky 
capacitor model for electrostatic analysis poses some 
difficulties in terms of accurate calculation of electrostatic 
force. The main problem is due to the presence of spatial 
derivatives in the expression for this force (see Eq. (2)). As the 
algorithm progresses, the conductor and void regions become 
more and more well defined with distinct interfaces separating 
them. Consequently, the discontinuities at their interfaces 
become sharp. This leads to some loss of resolution in 
computing the force if the finite element discretization is not 
adequately fine. This problem may be partially resolved by 
using the standard mesh independency filter that is used in 
topology optimization [9]. This filter acts like a convolution 
filter on the sensitivity values and smoothens the interfaces 
between material and void regions. This helps in computing the 
forces to an acceptable degree of accuracy. The mesh 
independency filter is given as follows. 

  

1

1

ˆ

N

j j j
j

i N

i j
j

H A
A

H

γ

γ

=

=

=
∑

∑
  (13) 

 
where jH  is the weight factor, which is defined as  
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where MIFr  is the radius of the mesh independency filter and 
N  is the number of mesh elements.  

Although the problem of resolving the force accurately 
may be resolved throughout the domain using a mesh 
independency filter, it was observed that it still arises at the 
interfaces between the design and non-design regions. Since, 
by definition, the non-design regions are not part of the design 
domain, the mesh independency filter is not able to smooth the 
discontinuities at the interface. To rectify this problem, we 
introduce a secondary filter that acts on the values of γ  and 
performs a local averaging in a small radius on either side of 
each of these interfaces. This has the effect of smudging out 
sharp discontinuities at the interfaces. The expression for the 
secondary filter is given below. 

 
'

1

'

1

ˆ

N

j j
j

i N

j
j

H

H

γ
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=
∑

∑
  (15) 

 
where '

jH  is the weight factor for the secondary filter is 
defined as 
 

( )
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. . | ,
j SF
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H r dist i j

s t j N dist i j r

= −

∈ ≤
  (16) 

 
for all i  such that the distance of element i  from its nearest 
such interface is less than or equal to SFr . Here SFr  is the 
radius of the filter used in the secondary filter. The combination 
of these two filters ensures that the computation of the 
electrostatic force is accurate even at the interfaces between 
conductors and void regions irrespective of those interfaces 
being in contact with the non-design domain. 

RESULTS AND DISCUSSION 
We now present two examples to demonstrate the capability of 
the new formulation for performing topology optimization of 
electrostatically actuated structures. Although we shall deal 
only with simple examples here, the method is extendable to 
more complex scenarios with additional effort in 
implementation. The examples considered here serve as 
benchmark problems because intuitively we know the optimal 
solutions for these. 

The first example problem was to get the stiffest structure 
that is held rigidly at two places on the bottom edge. The 
structure is maintained at a fixed potential of 10 V while a 
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grounded electrode is placed in between the two anchor points 
as shown in Fig. 2. Symmetry boundary conditions are used to 
simplify computation so that only the right symmetric half of 
the structure is designed. In this problem there is a natural 
conflict in deciding where to place material. Putting material 
close to the anchor points increases stiffness but increases the 
proximity between the two electrodes. This leads to higher 
electrostatic force which results in increased deformation of the 
structure. If the material is moved farther from the support and 
the bottom electrode, the electrostatic force decreases but the 
structures becomes less stiff. This is the nature of the problem 
where there are design-dependent loads. The optimal topology 
is expected to be one that obeys a compromise between the two 
extremes. The resulting optimal topology is shown in Fig. 3. As 
to be intuitively expected, we obtained an arch-like structure 
that is located near the middle of the design domain. This is the 
optimal position that is the stiffest under the action of 
distributed transverse loads, which electrostatic force becomes 
in the converged solution.  

 

 
The second example’s problem specifications (Fig. 4) are 

given such that a conflict is created to place the material 
between two parallel electrodes. Since, when material is placed 
close to the electrodes the force increases, the algorithm has to 
resolve the tradeoff given that there are electrodes on both the 
sides. To make it more challenging, the anchors were specified 
asymmetrically. The design domain and boundary conditions 

V B0B 

Figure 2. The stiffest structure optimization problem 
showing the symmetric right half of the design domain. 

Figure 3. The optimal topology for the problem shown in 
Fig. 1 above.  
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are shown in Fig. 4. We see that the presence of diagonal 
electrostatic boundary conditions results in an S-shaped beam 
that is fixed at both ends as shown in Fig. 5.  

 

 

  

CLOSURE 
With the miniaturization of devices, there is an increasing 
demand for systematizing the process of designing 
electrostatically actuated micromachined structures. Topology 
optimization offers an attractive method for achieving this goal 
due to the flexibility present in applying the same synthesis 
algorithm to a variety of situations. The key features of this 
paper are a material interpolation model and the accurate 
analysis model for the electrostatics problem even in the 
intermediate material state. The method is amenable for 
implementation on commercial finite element analysis 
platforms. Although in this paper we have chosen to 
demonstrate examples of stiffest structures for the sake of 
simplicity, the same scheme can be applied to any objective 

Figure 5. The optimal topology for the problem shown in 
Fig. 4. 

V B0B 

Figure 4. Strain energy minimization under diagonal 
electrostatic boundary conditions 
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function by making appropriate changes to the terms in the 
implementation in the COMSOL MultiPhysics platform. This is 
currently being pursued in our ongoing work. 
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