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Chapter 5 

Finite Element Modeling for Bar Elements Using the MPE Principle 

 
In this Chapter, we will systematically construct the finite element model for the bar element.  

5.1 Strain energy for a bar element 
Let us recall from Chapter 4 that the strain and stress for a bar element are given by the following 

expressions when we use linear shape functions. 
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The strain energy for the bar element is then computed by integrating the strain energy density over the 

entire volume of the element. Since, the area of cross-section within the element is assumed to be 

constant, the integration will be carried out over the length of the element. 

 

 The strain energy density is half of the product of stress and strain. Although stress and strain are 

scalar quantities in the case of bar elements, they are vectors∗ in the general case. So, we will use vector 

notation here also. The scalar (dot) product of two vectors V1  and V2 is given by V VT
1 2. Thus the strain 

energy density is εσT
2
1

. Therefore, 
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Note that D the stress-strain matrix is symmetric, i.e, DT=D. Each of the matrix and vector entries in the 

above equation are expanded out fully for the sake of clarity. 
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We can now substitute Equation (3) into Equation (2). In doing so, we take those terms that do not 

depend on x out of the integral sign. Note that x varies within the element from x1 and x2. And, when we 

do integration on a matrix, we integrate each term in the matrix. Note further that (x2-x1) = Le. 

 

                                                 
∗ Actually tensors, but we will use the vector notation here to keep mathematical manipulations simple. 
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We wrote SE in matrix form for a good reason, which would become clear later in this chapter. The 

matrix Ke  re-written below is called the element stiffness matrix. Note that it is symmetric. This is a very 

important property of the stiffness matrix and is true for any type of element. 
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where 
e

ee
e L

EA
k = . When we expand SE in Equation (4), what we get is very familiar to us: it is simply 

the strain energy of a spring whose spring constant is ke with its ends having deformations q1 and q2.  
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Figure 1 Equivalence of a bar element of linear shape functions and a spring 

 

 So, in a way, all we have done in this section is to derive a simple result in a convoluted manner. 

But, we should not say that. We have followed a very general procedure for constructing SE for a finite 

element. Since, our shape functions were linear interpolators, we ended up with a familiar result in 

Equation (6). Can you, for instance, write SE if we use quadratically interpolating shape functions for the 

bar element? You probably cannot write it simply by inspection. But, if you follow this general 

procedure, you can do it systematically. 

q1 q2 q1 q2 

ke Ae, Ee, Le 
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Exercise 5.1 

Using the quadratic interpolating functions (Equation 13 in Chapter 4), derive an expression for SE of a 

bar finite element. 

Answer: 
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5.2 Work potential for a bar element 

The work potential WP, as outlined in Chapter 2, is the negative of the work done by the external forces 

on a structure. But, we need to know what kinds of forces act on a structure. Although writing down WP 

for a bar element is easy, we will follow a general, matrix based approach so that we can do it for other 

types of elements easily. 

 

Table 1 Different types forces acting on a structure 

 Body forces Surface forces Point forces 

Definition Defined per unit volume 

of the structure. 

Defined per unit external 

surface area of the 

structure. 

Defined at a point on the 

surface – a special case of 

surface forces. 

Symbol/Units f    N/m3 T   N/m2 P   N 

Explanation They act at every point 

inside of the structure 

They act at every point on 

the boundary of the 

structure 

They act a single point. 

They are also called 

concentrated forces. 

Example Gravity force Electrostatic force, fluid 

pressure force, etc. 

Any mechanical push-

pull type force. 

Equation 
∫−=
V

dVWP fuT  ∫−=
S

dSWP TuT  ∑
=

−=
N

i
ii PuWP

1
 

Assuming that there are 

N point forces. 

 

The integration shown in the above table is to be done over the element. Let us do that separately for each 

case. 

Body forces: 
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Noting that Nqu =  (Equation (4) in Chapter 4), 
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If we assume that the cross-section area Ae and the body force f are constant within the element, 

we only need to integrate N1 and N2. From Chapter 4, we have 
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Thus, 
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Substitution of integrals from Equation (8) into Equation (7) yields: 
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where fe is called the element body force vector.  

 

Equation (9) implies that the total body force acting on the element AeLef, is divided equally between the 

two nodes. Once again, it is a simple result that could have been written by inspection. But, if we use 

quadratic shape functions, the contribution of the element body force on each of the three nodes is not 

obvious. Fortunately, the systematic procedure we followed in this section enables is to do that. 

 

Surface forces: 

Following the same procedure as above, we get 

 ∫ =
eS

e
TT dS TqTu          (10) 
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eT is called the element surface force vector. In Equation (10), T is treated as force per 

unit length. This is because, we have assumed that the area of cross-section along the element is a 

constant, and therefore there is no need to include the perimeter into the definition of T. This is a subtle 

point and it will become clearer when you look at 3-D problems. It suffices to note at this point that for 1-

D and 2-D problems T is really a distributed “line force” defined per unit length. This makes sense, 

because the boundary for 1-D and 2-D objects is really a curve and not a surface. 

 

Point forces: 

The quantity ui in ∑
=

N

i
ii Pu

1
  is the displacement at the point where the point force Pi is acting. Since we 

have the interpolating function for the deformation u, we can compute ui even if the point is within the 

element. However, it is recommended that nodes be placed at the points where point forces are acting. As 

you will see later, there is some convenience in doing this. Thus, assuming that point forces are allowed 

to act only at the nodes, 
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where 

 Ndofelement
 is the number of degrees of freedom (dof) of the element. For a bar element dof is 2, 

viz. q1 and q2.  

 

 The concept of dof for a finite element is very important. The value ofNdofelement
 determines the 

size of the element matrices and vectors. The element stiffness matrix is of size (Ndofelement
 x Ndofelement

), 

while the force and deformation vectors are of the size (Ndofelement
 x 1). 

 

Now, we are in a position to write WP for the bar element using Equations (9), (10, and (11). 

 e
TT

e
T

e
TWP FqPqTqfq −=−−−=        (12) 

where 

 PTfF ++= eee          (13) 

 

5.3 Potential energy of the bar element 
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The potential energy of the bar element, from Equations (4) and (13), can be written as 

 e
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e
T

ePE FqqKq −=
2
1

        (14) 

5.4 Total potential energy of the entire bar 

We can compute the PE for each element as per Equation (14). By adding the individual PEe’s, we can 

compute the total potential energy of the entire bar. 
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where 

 Ne  is the total number of elements in the discretized bar. 

 

If we have a large number of elements, Equation (15) can become very long. Note that PE will be a 

function of (Ndof = Nn xNdof node) q’s, if Nn is the number of nodes in the discretized structure. According 

to the MPE principle, we have to take the derivative of PE in Equation (15) with respect to all of these 

q’s. It looks like a daunting task, but there is really a nice structure to the finite element formulation. The 

importance of the matrix notation becomes useful at this juncture. 

 

Equation (15), after summing, takes the following form: 

 FQKQQ TTPE −=
2
1

        (16) 

where 

 Q  is the global deformation vector of size (Ndof x 1) 

 K  is the global stiffness matrix (Ndof x Ndof) 

and F  is the global force vector of size (Ndof x 1) 

 

The assembly process that leads to the global system matrix and vectors warrants careful understanding. 

We will discuss this in the next section. 

 

 We can now apply the MPE principle to Equation (16). If we take the derivative of PE with 

respect to Q , we get 

 FKQFKQ
Q

=⇒=−=
∂
∂ 0PE

      (17) 
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It is important to understand the differentiation done to the matrix form of Equation (16). You may want 

to verify Equation (17) by doing the differentiation on the expanded (i.e., multiply out matrices and 

vectors and reduce the right hand side entity in Equation (16) to a scalar expression) version of PE, then 

taking the derivative with respect to each of the q’s, and then converting back to the matrix form. It is 

recommended that you do it for a small Ndof, say 2. But, once you are comfortable taking derivatives with 

the matrices themselves, it is not tedious at all. This is one advantage of the matrix notation. 

 

 FKQ =           (18) 

is the matrix form of equilibrium equations. It consists of Ndof linear equations. The unknown Q  can be 

computed by solving Equation (18). 

 

 We have now obtained what we need, but we haven’t discussed yet how we assembled the global 

matrices and vectors. We will discuss that next. 

 

5.5 Assembly of global matrices and vectors 

Consider three bar elements consisting of four nodes viz. qi-1, qi, qi+1, and qi+2 as shown in Figure 2a. 

Each of the three elements will have an element stiffness matrix, and element deformation and force 

vectors (Equations (5) and (13)). Their placement in the global system is shown in Figure 2b. The 

assembly takes place in the following manner. The contribution of the stiffness matrix of an element 

made of nodes i and j goes to a sub-matrix of the global matrix that is formed by rows i and j, and 

columns i and j. Each entry in the global stiffness matrix will receive contribution from two elements. 

Obviously there are going to be many zero entries in the matrix. In fact, it is a tri-diagonal matrix. That is, 

only the diagonal and the ones immediately next to them are the only non-zero entries. The assembly of 

deformation and force vectors takes place in a similar manner. 

qi-1 qi qi+1 qi+2

i-1 i i+1 i+2
 

Figure 2a Sample of three bar elements 
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Figure 2b Assembly of global system for the three elements in Figure 2a 

 

 Assembly of bar elements is very simple, as you just saw. Other types of elements will need some 

more work and organization. We will consider this aspect when we deal with truss and beam elements 

later.  

5.6 Imposing the displacement boundary conditions 

After assembly of the global system stiffness matrix, and displacement and force vectors we get the 

equation shown below: 

 KQ = F           (19) 

The matrix K in the above equation will be singular (i.e., the determinant is zero) as it is not constrained 

from moving like a rigid body (i.e., no deformation). Every structure that we analyze will be constrained 

in one way or the other. Constraining a structure implies that some q’s within Q will be set to a known 

value. When the set value is zero, the corresponding degree of freedom is fixed. Non-zero value implies 

that there is a known displacement at that degree of freedom. This situation arises when you pull a beam 

and displace it by some known amount. We will discuss both the zero and the non-zero cases next. 

 

 First, note that each row in the matrix Equation (19) is a linear equation in q’s. If a certain q is 

known to be zero, say i th q, then we don’t need to include i th row in our solution. The reasoning is as 

follows. Originally we had Ndof q’s. So, we need Ndof equations to solve for q’s/ Now we have one less q 

(which is known to be zero). So, we can throw away the corresponding equation, i.e., the corresponding 

row. Note also that the i th column also becomes useless now, because the matrix entries in the i th 

column multiply with i th q. But, that is zero. So, we discard i th column as well. Therefore, whenever a 

degree of freedom is specified to be zero, we simply discard the corresponding row and the column. 
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 Let us take a simple example to illustrate the above point. Consider a small finite element model 

with only four degrees of freedom. Its matrix equation before imposing the boundary conditions is shown 

below. 
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Note that we used the fact that the stiffness matrix is symmetric in writing the entries of K. The Equation 

(20) is a set of four linear equations: 

 

4444334224114

3434333223113
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1414313212111
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       (21) 

 

Let us say that q2 is specified to be zero. Then Equations (21) become 

 

4444334114
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1414313111
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        (22) 

 

We only need to solve for q1, q3, and q4. So, we need only the first, third, and fourth equations in 

Equations (22). Those three can be represented in matrix form as  
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which is obtained by discarding the second row and column of matrix in Equation (20). 

 

 When the specified value is non-zero, we still discard the corresponding row, but we don’t simply 

discard the corresponding column. This is because the matrix entries in the column multiply with a non-

zero valued specified q which is still a part of each row, This quantity, a known number now, should be 

taken to the right hand side and added to the force on that row. In other words, a component of the 
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reaction force due to the non-zero valued displacement boundary condition goes to every row (of course, 

if a matrix entry in the i th column is zero, there won’t be any contribution to the right hand side). Let us 

observe this with the same example of Equation (20). 

 

If q2 is specified to be a non-zero value v2, Equations (21) become 

  

4444334224114

3434333223113

2424323222112

1414313212111

fqkqkvkqk
fqkqkvkqk
fqkqkvkqk
fqkqkvkqk

=+++
=+++
=+++
=+++

      (24) 

 

Now, we don’t need the second equation in Equations (24) as we already know what q2 is. So, we take 

only the first, third, and fourth equations to solve for q1, q3, and q4. But, now we see that there is a known 

numerical quantity k vi2 2  (i=1, 3, and 4), which should be taken to the right hand side as shown below in 

the matrix form: 
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Thus, when a non-zero value is specified, we still reduce the matrix size by 1, but need to subtract 

something from the force vector. This is essentially a component of the reaction force affecting other 

degrees of freedom due to fixing q2 to a known value. 

 

 Another important point is worth noting here: whenever we fix a degree of freedom, we get a 

reaction force. That can be easily calculated. In the above example, when we fixed q2 to v2, we go back to 

the second equation in Equations (24). The f2 that results after solving for q1, q3, and q4 is the reaction 

force at the second degree of freedom. 


