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Chapter 3 

Rayleigh-Ritz Method 
 
As discussed in Chapter 2, one can solve axially loaded bars of arbitrary cross-section and material 

composition along the length using the lumped mass-spring model. As shown in Figure 12 of Exercise 

2.4, one can approach the exact solution very closely by dividing the bar into more elements. One of the 

disadvantages of the lumped models is that we can only compute the deflection at the locations of the 

lumped masses (we call these points nodes), and we know nothing about what happens within the 

element. Consequently, if we want to get the smooth shape of the deflection curve, we need to take a very 

large number of elements. The Raleigh-Ritz method offers an alternative method to overcome these 

problems. This method also uses the MPE principle. 

 

 Referring back to the tapering beam problem, what we were able to do with the lumped model is 

essentially solving the governing differential equation that represents the deflection of axially loaded bars. 

Our method of solution was of course numerical. It is worthwhile to study the differential equation that 

we just solved numerically in Chapter 2. 

 

 Thus, the objectives of this Chapter are: (i) Derive the differential equation of an axially loaded 

bar using the force-balance method (ii) Derive the same equation using the MPE principle (iii) Discuss 

the Rayleigh-Ritz method. 

 

3.1 Derivation of the governing differential equation of an axially loaded bar using the 

force-balance method 

Let A(x), the cross-section area of the bar at x, be given. There is a body-force (gravity-like force), f(x), 

per unit volume of the bar. σ(x), the axial stress and u(x), the axial deflection, are two unknown 

functions. We would like to derive a differential equation that describes the axially loaded bar so that we 

can solve for σ(x) and u(x). 

 

 Consider a differential element of length dx at some x. The stress and area at the left end of the 

differential element are σ(x) and A(x). At (x+dx), the right end, the same quantities can be approximated 

as ⎟
⎠
⎞

⎜
⎝
⎛ + dx

dx
xdx )()( σσ and ⎟

⎠
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⎝
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xdAxA )()( . The free-body-diagram of the infinitesimally small 

differential element shows that the internal forces (stresses multiplied by areas of cross-section) balance 
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the body-force acting to the right. The body force acting on the differential element is given by 

f x A x dx( ) ( ) . Let us now expand and simplify the internal force acting to the right. 
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The last term in the above expression is a small second-order term and hence it can be ignored as shown 

stricken by an arrow in Equation (1). The first term balances the internal force acting on the left end of the 

differential element. So, the second and third terms and the body-force term should sum to zero for 

equilibrium 

 

0)()()()()()( =++ dxxAxfdx
dx

xdxAdx
dx

xdAx σσ      (2a) 

 

You can easily check that after canceling dx although in the above equation, the two terms on the left 

hand side can be collapsed as one term as shown below. 
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=+ dxxAxf
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xAxd σ
       (2) 

 

This leads to the following differential equation in σ(x). 

 

 ( ) 0)()()()( =+ xAxfxAx
dx
d σ        (3) 

 

Next, we would like to express u(x) in terms of σ(x) so that we can get the governing differential 

equation in u(x). From the definition of axial strain (change in length divide by the original length), we 

get the following expression for strain, 
dx

xdux )()( =ε , where du(x) is the deflection of the differential 

element of length dx. We also know the relationship between stress and strain: )()( xEx εσ = where E is 
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the Young’s modulus. By substituting these relationships into Equation (3), we get the governing 

differential equation: 
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σ(x) A(x)

A(x)

 

Figure 1 Force balance of a differential element in an axially loaded bar 

 

We had observed in Chapter 2 that the equilibrium equations could be written using the 

force balance method as well as the MPE principle. For the continuous model of an axially 

loaded bar, we just derived the equilibrium differential equation using the force-balance method. 

We will obtain the same equation using the MPE principle now.  

 

3.2 Derivation of the governing equation using the MPE principle 

In this method, first we need to write down the PE of the system. Since this is a continuous model, both 

SE and WP are integrals over the length of the bar. Note that 

 ∫∫ ==
dVdV

dVstrainstressdVdensityenergystrainSE )()(
2
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By denoting 
dx

xdu )(
 by u′ , from Equations (5) and (6), the PE can be written as the sum of SE 

and WP. 
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As before, we have to minimize PE with respect to the deformation variables. Here, the deflection 

variable, u(x) is a continuous function, and the PE is an integral. In fact, PE in Equation (7) is called a 

functional ⎯ in this case an integral whose integrand is a function (in this case a differential 

relation) of some function u(x).   

 

Next we will show that if PE is minimized with respect to all kinematically admissible 

displacement u(x), then that u(x) satisfies the differential equation (4).  To show this, consider the 

kinematically admissible displacement )()()(~ xuxuxu δα+=  where the variation from the exact 

solution  u(x) is given by the function )(xuδ  times the parameter α .  Since )(~ xu  must satisfy the same 

kinematical boundary conditions as u(x), it follows that 0)0( ==xuδ . With )(~ xu  substituted in the 

place of u(x) in the PE expression in Equation (7), for a given  )(xuδ , we can regard the potential energy 

to be a function of the parameter α , i.e., )(αPE .  Then, minimizing )(αPE  with respect to α  and 

setting α = 0  gives the desired governing differential equation: 
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By substituting 0=α , we get 
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Integrating the expression in the last equation by parts and using the boundary conditions on )(xuδ , we 

arrive at (note: we substitute 
dx

xduu )(
=′  to get back to our original notation) 
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Since this last integral must vanish for all kinematically admissible uδ  when the potential energy of the 

deformed beam is minimized, it follows that the integrand itself must vanish, i.e.: 
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which is the same as Equation (4).   

 

 We have demonstrated above that the MPE principle can be applied to continuous elastic systems 

as well. In fact, in doing so, we have utilized a fundamental mathematical approach in the calculus of 

variations. We could also have derived Equation (9) by applying what is known as Euler-Lagrange 

equation of calculus of variations. The Euler-Lagrange equation helps us minimize a functional (the PE 

expression in Equation (7) in our case) with respect to a function (in our case u(x)). It is given by 
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  You should verify that Equation (10) also leads to Equation (9).  

 

 Once again, the MPE principle gave us the solution with less work and more systematically as 

compared to the force-balance method. It is systematic in the following sense. If you were to derive the 

governing equilibrium differential equation for a beam, all you need is its PE, as opposed to the force-

balance method where you need to know much more about the internal forces. Much of the theoretical 

basis for the finite element method is rooted in the method we used above. In particular, Equation (10) is 

a fundamental equation in calculus of variations – an important mathematical tool in FEM formulations. 

Refer to any book on calculus of variations for more details. References to two books are given in the 

bibliography at the end. 
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3.3 Rayleigh-Ritz method 

In Chapter 2, we solved a problem numerically the differential equation of which we derived in this 

chapter. We noted that the lumped-model method gives us deflections at only some discrete points 

(nodes), and we know nothing in between the nodes. Rayleigh-Ritz method is an alternative numerical 

method to solve the same equation in a simple way to know what happens in between as well. 

 

 There is one more thing to bear in mind. The lumped-model method gave us a nice set of linear 

equations, which we can easily solve. Also, we reduced a continuous system to a discretized system so 

that we can easily implement it on the computer. We don’t want to lose these advantages in the Rayleigh-

Ritz method. Thus, the Rayleigh-Ritz method is another way to discretize the continuous model. 

 

 Let us refer to Equation (7). We need to minimize PE to find u(x). If u(x) were to be a scalar 

variable, we could have minimized PE very easily as we did several times in Chapter 2. So, we have to 

employ a trick to get u(x) to become scalar variables somehow. We can do that as follows. 

 

 Note from Figure 12 of Chapter 2 that as we increased the number of elements, the deflection 

curve converged to a continuous shape. And that shape looks like a parabola. So, the unknown function 

u(x) can be assumed to be a quadratic equation of the form shown below. 

 

 2
210)( xaxaaxu ++=         (10) 

But, what we don’t know are three scalars viz. a0, a1, and a2. That is perfectly agreeable to us, because 

we can substitute for u(x) from Equation (10) into the expression for PE given in Equation (7). Then, we 

get PE in terms of scalar quantities as we wanted. Now invoke the  MPE principle. 

 

 Extremize PE a a a with respect to a a a ( , , )      , ,  &0 1 2 0 1 2     (11) 

 

The conditions for solving the above are: 

 

 
( ) 0=
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PE

  i = 0, 1, 2       (12) 

 

Equations (12) result in three linear equations in a0, a1, and a2, which can easily be solved. In fact, you 

would note at once that a0 = 0 as u(x=0) = 0. That is our assumed function for u(x) should satisfy the 
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boundary condition. Or in other words, it should be a kinematically admissible deformation. If you didn’t 

appreciate kinematic admissibility in Chapter 2, here is the second chance! 

  

Exercise 3.1 

For the same tapered bar problem considered in Chapter 1, use the Rayleigh-Ritz method. That is, write 

Equations (7), and (12) to solve for a0, a1, and a2. 

 • Work it out by hand so that you can understand more. 

 • Try it out with Maple also so that you can solve more interesting and larger problems. 

 • Check the Rayleigh-Ritz solution with the lumped-model solution with a large number of 

 elements. 

 

Exercise 3.2 
Consider the overhanging simply supported beam shown below in Figure 2. In order to use the Rayleigh-

Ritz method, we would like to approximate the deflected profile, )(xv as 
⎭
⎬
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⎨
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L
xa π2cos  where L is the 

length of the beam. Use the minimum potential energy principle to compute the unknown constant, a . 
(a) Draw the assumed deflected profile. Is it a kinematically admissible function?  

(b) Write down the expression for the strain energy of the beam. 

(c) What is the work potential due to each force (use yx=0 , yx=40 , and yx=80)? 

(d) Compute the expression for the total potential energy in terms of a . 

(e) Compute the value of a . 

 

Note: 
2
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⎝
⎛
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x

0” 20” 60” 80”

2.5 lb

0.25 lb0.25 lb

b = 1”

h = 0.5”

Cross-section

E = 179.2 ksi

40”
  

Figure 2 Overhanging simply-supported beam 
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 If a single assumed function is not adequate to represent the deformation, one can use more than 

one function for different parts of the structure. Each of these functions will have unknown coefficients 

which can be determined by minimizing PE. If more than one function is used, one needs to ensure 

continuity of the functions at points where they connect with each other. The following exercise uses this 

technique. 

 

Exercise 3.3 

Repeat the tapered bar problem if the area of cross-section varies as follows. Area at the top is the same as 

before (i.e., A0). The cross-section area remains constant up to the middle of the bar (x=0.5), and then 

increases parabolically to become three times A0 at the bottom. 

01 )( AxA =    for  0 ≤ x  ≤ 0.5 

)883()( 2
02 xAxA +−=  for  0.5 ≤ x  ≤ 1 

Use two different polynomials for the ranges (0 ≤ x  ≤ 0.5) and (0.5 ≤ x ≤ 1) to approximate u(x) with two 

piece-wise continuous polynomials. Note that you should ensure continuity at x = 0.5 so that u(x) and its 

derivative are continuous. 

 

Exercise 3.4 
Comfy Beds, Inc. is considering a new design for the box-spring system. It consists of top and bottom 

grids of thin strips of metal connected by linear helical springs. A portion of this new box-spring system 

is shown in the figure. Use Rayleigh-Ritz method to determine the maximum deflections of the top and 

bottom beams. (see Figure 3). 

 

Use  2
222

11111 )(
xay

lxxay
−=

−=
 as the basis functions where y1 and y2 are the deformations of the top and 

bottom beams respectively. x1 and x2 are zero at the left end of each beam. 
 
(a) Do the above basis functions satisfy the kinematic admissibility conditions? Explain how. 
 

(b) The strain energy for a beam is given by dx
dx

ydEIL 2

2

2

0 2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫ . Write the total strain energy stored in the 

two beams and the spring in terms of a1 and a2.  
 
(c) What is the work potential due to the applied force, F of 5 lb? (again in terms of a1 and a2). 
 
(d) Use the principle of the minimum potential energy to find the equilibrium values of a1 and a2. 
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Both beams have rectangular cross-section of thickness 0.1 in and a width of 1 in. The Young's modulus 

is 30E6 psi, and the spring constant, k is 10 lb/in. The applied force F is 5 lb. l1 and l2 are respectively 40 

in and 30 in. 

 

A B

D

E

C

Force = F

k

l1/2 l1/2

l2

 
Figure 3 The schematic of the springs used by Comfy Beds, Inc. 

 

 

 The Rayleigh-Ritz method is a powerful method to use if we know a priori, the nature of the 

function for the deformation. However, we may not be able to guess such a function or several piece-wise 

functions for any given problem. The FEM enables us to come up with such functions systematically. 

Those functions are called shape functions. They serve the following purpose. 

 

• Approximate the continuous deformation using piece-wise functions defined over elements. 

• Shape functions depend on some scalar quantities and those scalar quantities are nothing but the 

value of the deformation at the nodes. 

• Interpolation, i.e., knowing what happens within the element is readily available through shape 

functions. 
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 The following Table summarizes the basic concepts we laid out in Chapters 2 and 3. In the next 

chapter, we will study the shape functions and apply this concept to the axially loaded bars once again. 

This is the real beginning of our FEM discussion. 

 

Table 1 Comparison of three approaches to deformation analysis 

 Lumped-model Rayleigh-Ritz FEM 

Discretization Divide into segments 
(“element”). The 
value of the 
deformation at the 
discrete points 
(“nodes”) are the 
unknown scalar 
quantities to be 
determined using the 
MPE principle. 

Discretization concept 
is different. You do 
convert a continuous 
problem into a 
discrete problem. But, 
the discrete (scalar) 
unknowns are 
coefficients of the 
assumed polynomials 
(basis functions).  

In principle, it is the 
same as the lumped 
model, i.e., the 
discretization is 
physical. 

Interpolation Not possible. You need to know the 
nature of the function 
so that you can 
approximate the 
deformation curve 
with one or more trial 
(guess) functions 
globally. 
 
The procedure is not 
systematic. 

The procedure is 
systematic. 
 
Shape functions are 
used for interpolation 
locally for small 
elements. 

  


