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Chapter 2 
The Principle of Minimum Potential Energy 

 

The objective of this chapter is to explain the principle of minimum potential energy and its application in 

the elastic analysis of structures. Two fundamental notions of the finite element method viz. discretization 

and numerical approximation of the exact solution are also explained. 

 

2.1 The principle of Minimum Potential Energy (MPE) 
Deformation and stress analysis of structural systems can be accomplished using the principle of 

Minimum Potential Energy (MPE), which states that 

 

For conservative structural systems, of all the kinematically admissible deformations, those 

corresponding to the equilibrium state extremize (i.e., minimize or maximize) the total potential 

energy. If the extremum is a minimum, the equilibrium state is stable. 

 

Let us first understand what each term in the above statement means and then explain how this principle 

is useful to us. 

 

 A constrained structural system, i.e., a structure that is fixed at some portions, will deform when 

forces are applied on it. Deformation of a structural system refers to the incremental change to the new 

deformed state from the original undeformed state. The deformation is the principal unknown in structural 

analysis as the strains depend upon the deformation, and the stresses are in turn dependent on the strains. 

Therefore, our sole objective is to determine the deformation. The deformed state a structure attains upon 

the application of forces is the equilibrium state of a structural system. The Potential energy (PE) of a 

structural system is defined as the sum of the strain energy (SE) and the work potential (WP). 

 WPSEPE +=          (1) 

The strain energy is the elastic energy stored in deformed structure. It is computed by integrating the 

strain energy density (i.e., strain energy per unit volume) over the entire volume of the structure. 
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The strain energy density is given by 
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The work potential WP, is the negative of the work done by the external forces acting on the structure. 

Work done by the external forces is simply the forces multiplied by the displacements at the points of 

application of forces. Thus, given a deformation of a structure, if we can write down the strains and 

stresses, we can obtain SE, WP, and finally PE. For a structure, many deformations are possible. For 

instance, consider the pinned-pinned beam shown in Figure 1a. It can attain many deformed states as 

shown in Figure 1b. But, for a given force it will only attain a unique deformation to achieve equilibrium 

as shown in Figure 1c. What the principle of MPE implies is that this unique deformation corresponds to 

the extremum value of the MPE. In other words, in order to determine the equilibrium deformation, we 

have to extremize the PE. The extremum can be either a minimum or a maximum. When it is a minimum, 

the equilibrium state is said to be stable. The other two cases are shown in Figure 2 with the help of the 

classic example of a rolling ball on a surface. 

(a) (b) (c)

 

Figure 1 The notion of equilibrium deformed state of a pinned-pinned beam 

 

Stable Unstable Neutrally stable  

Figure 2 Three equilibrium states of a rolling ball 

 

There are two more new terms in the statement of the principle of MPE that we have not touched upon. 

They are conservative system and the kinematically admissible deformations. Conservative systems are 

those in which WP is independent of the path taken from the original state to the deformed state. 

Kinematically admissible deformations are those deformations that satisfy the geometric (kinematic) 

boundary conditions on the structure. In the beam example above (see Figure 1), the boundary conditions 

include zero displacement at either end of the beam. Now that we have defined all the terms in the 

statement, it is a good time to read it again to make more sense out of it before we apply it. 

2.2 Application of MPE principle to lumped-parameter uniaxial structural systems 
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Consider the simplest model of an elastic structure viz. a mass suspended by a linear spring shown in 

Figure 3. We would like to find the static equilibrium position of the mass when a force F is applied. We 

will first use the familiar force-balance method, which gives 

 kxforcespringF ==  at equilibrium ( k  is the spring constant) 

∴ 
k
Fx mequilibriu == δ          (3) 
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Figure 3 Simplest model of an elastic structural system 

 

We can arrive at the same result by using the MPE principle instead of the force-balance method. Let us 

first write the PE for this system. 
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As per the MPE principle, we have to find the value of x that extremizes PE. The condition for 

extremizing PE is that the first derivative of PE with respect to x is zero. 

 
k
FxFkx

dx
PEd

mequilibriu ==⇒=−⇒= δ00)(
     (5) 

We got the same result as in Equation (3). Further, verify that the second derivative of PE with respect to 

x is positive in this case. This means that the extremum is a minimum and therefore the equilibrium is 

stable.  

 

Figure 4 pictorially illustrates the MPE principle: of all possible deformations (i.e., the values of x 

here), the stable equilibrium state corresponds to that x which minimizes PE. For the assumed values of k 

= 5, and F = 10, equilibrium deflection is 2 which is consistent with Figure 4. As illustrated in Figure 3, 

the MPE principle is an alternative way to write the equilibrium equations for elastic systems. It is, as we 

will see, more efficient than the force-balance method. Let us now consider a second example of a spring-

mass system with three degrees of freedom viz. q1, q2, and q3. The number of degrees of freedom of a 

system refers to the minimum number of independent scalar quantities required to completely specify the 

system. It is easy to see that the system shown in Figure 5 has three degrees of freedom because we can 

independently move the three masses to describe this completely. 



 2.4

 

0 2 4

-10

-5

0

5

10

PE of a spring-mass system

x

P
E

k = 5  and  F = 10

 

Figure 4 PE of a spring-mass system 
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Figure 5 A spring-mass system with three degrees of freedom 

 

We will use the MPE principle to solve for the equilibrium values of q1, q2, and q3 when forces F1 and F3 

are applied (Note that one can also apply F2, but in this problem we assume that there is no force on mass 

2). In order to write the SE for the springs, we need to write the deflection (elongation or contraction) of 

the springs in terms of the degrees of freedom q1, q2, and q3.  
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The PE for this system can now be written as 
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For equilibrium, PE should be an extremum with respect to all three q’s. That is, 
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Noting the relationship between q’s and u’s from Equation (6), we can readily see that the equilibrium 

equations obtained in Equations (8) can be directly obtained from force-balance on the three masses as 

shown in Figure 6. 
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Figure 6 Force-balance free-body-diagrams for the system in Figure 5 

 

 It is important to note that Equations (8) were obtained routinely from the MPE principle where 

as force-balance method requires careful thinking about the various forces (including the internal spring 

reaction forces and their directions. Thus, for large and complex  systems, the MPE method is clearly 

advantageous, especially for implementation on the computer. 

 

The linear Equations (8) can be written in the form of matrix system as follows: 
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or  FKq =           (9b) 
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(bold letters indicate that they are either vectors or matrices.) 

The matrix K  is referred to as the stiffness matrix of a structural system. Any linear elastic structural 

system can be represented as Equation (9b). We will see later that the finite element method enables us to 

construct the matrix K , and vectors q  and F  systematically for any complex structure.  

 

Exercise 2.1 

Use MPE principle and the force-balance method to obtain the equilibrium equations shown in the matrix 

representation in Figure 7. 
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Figure 7 A spring-mass system and its equilibrium matrix equation 

 

2.3 Modeling axially loaded bars using the spring-mass models 

The spring-mass model is useful in arriving at the equilibrium equations for an axially loaded bar as 

shown in Figure 8. For a bar of uniform cross-section A, homogeneous material with Young’s modulus E, 

and total length l, the spring constant k is given by 

 
l

AEk =           (10) 

In order to see how we wrote Equation (10), consider the following equations. 
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Figure 8 Axially loaded bar as a spring-mass system 

Now, we can also analyze a stepped bar (a bar with two different cross-section areas) under two 

concentrated forces F1 and F2 as shown in Figure 9.  
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Figure 9 Axially loaded stepped bar and its lumped spring-mass model 

 

Exercise 2.2a 

Solve for q1 and q2 for the system shown in Figure 9 using the MPE principle. 
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Exercise 2.2b 

Repeat Exercise 2.2a when there are three segments. That is, determine the displacements q1, q2, and q3. 

Answer: 
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 Do you see any pattern emerging after working out Exercises 2.2a and b? If you work through 

more number of segments, we will see the tridiagonal pattern in the stiffness matrix. Let us now proceed 

to use this for a more realistic problem. 

 

 Consider the linearly tapering bar loaded with its own weight. This can be easily modeled as a 

spring mass system. This type of lumped modeling gives only an approximate solution, and as you can 

imagine, the accuracy improves with increased number of segments. As we increase the number of 
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segments, the number of degrees of freedom increases (i.e., more q’s) and the size of the stiffness matrix 

increases. But, the procedures for doing two bar segments in Figure 9 or many bar segments in Figure 10 

are exactly the same, except that it is repetitive and tedious as the number of segments increases. 

However, it is ideal for implementation on a computer. Notice that k for each segment is of the identical 

form.  

.  .  .

Tapering bar loaded 
with its own weight A lumped model

 

Figure 10 A tapering bar loaded with its own weight, and its lumped spring-mass model 

 

This example illustrates two important concepts. 

 

• Continuous systems can be approximated as lumped segments. This is called discretization⎯an 

important concept in FEM. The segments are called “finite elements”. 

 

• All elements have the identical form. So, a general method can be developed to handle large 

and complex structures. That is, by discretizing the structure into identical elements, the whole 

structure can be analyzed in a repetitive manner systematically. 

 

 What we have done in this Chapter is not FEM yet. It suffices to note at this point that FEM 

provides a systematic way of discretizing a complex structure to get an approximate solution. In addition 

to the intuitive notion presented in this chapter, there is a firm theoretical basis for FEM. We will examine 
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that in the later Chapters. Before we embark upon FEM formulation, it is worthwhile to discuss another 

important concept method called the Rayleigh-Ritz method. That is the topic of the next Chapter. 

 

2.4 Implementation of mass-spring systems in Matlab 

The finite element method is a numerical method. It is important to understand the practical 

implementation of it in addition to gaining a theoretical understanding of it. This notes emphasizes this 

aspect and includes finite element programs written in Matlab. You can do this in Maple, Mathematica, 

MathCad or anything else you are comfortable with. In order to be prepared to handle the finite element 

programs later, let us get started here with a simple Matlab script to solve the problem shown in Figure 

11.  

 

Exercise 2.3 

Write down the matrix equation system for the system shown in Figure 11 and study its implementation 

in the attached Matlab script. Run the script to get experience with Matlab. 

 

850kN

650 kN

1500 kN

Aluminum bar

Brass tube

Steel pipe

The steel pipe ID and OD are 125 mm and 200 mm.

The brass tube ID and OD are 100 mm and 150 mm.

The aluminum bar cross-section diameter is 100 mm.

E-steel = 210 GPa

E-brass = 100 GPa

E-aluminum = 73 GPa

Find the displacements at the points where forces are applied.

 

Figure 11 A composite axially loaded system 

____________________________________ 

Matlab script 1 for Exercise 2.3 

clear all 
clc 
clg 
hold off 
axis normal 
 
% Aluminum bar 
E1 = 73E9;      % Pa 
A1 = (pi/4)*(100E-3)^2;    % m^2 
L1 = 1.0;      % m 
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% Brass tube 
E2 = 100E9;      % Pa 
A2 = (pi/4)*( (150E-3)^2 - (100E-3)^2 ) ; % m^2 
L2 = 1.25;      % m 
 
% Steel pipe 
E3 = 210E9;      % Pa 
A3 = (pi/4)*( (200E-3)^2 - (125E-3)^2 ); % m^2 
L3 = 0.75;      % m 
 
% Forces 
F = [-650 -850 -1500]*1e3;   % N 
 
% Compute the spring constants 
k1 = A1*E1/L1; 
k2 = A2*E2/L2; 
k3 = A3*E3/L3; 
 
% Construct the stiffness matrix of the system 
K(1,1) = k1; 
K(1,2) = -k1; 
K(1,3) = 0; 
 
K(2,1) = -k1; 
K(2,2) = k1+k2; 
K(2,3) = -k2; 
 
K(3,1) = 0; 
K(3,2) = -k2; 
K(3,3) = k2+k3; 
 
% Solve for displacements 
u = inv(K)*F' 
____________________________________ 

 

Exercise 2.4 

Solve the linearly tapering bar problem by using a Matlab script. The advantage of writing in Matlab (or 

other similar software) is that we can vary the number of elements (i.e., the “fineness” of discretization) 

and observe what happens. Assume the following data. 

 

The bar is made of aluminum (E = 73 GPa, mass density = 2380 Kg/m3), and has a circular cross-section 

with beginning diameter of 100 mm and tip diameter of 20 mm. The length of the bar is 1 m. 

 

____________________________________ 

Matlab script 2 for Exercise 2.4 
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clear all 
clc 
%clg 
%hold off 
axis normal 
 
% Tapering aluminum bar under its own weight 
E = 73E9;    % Pa 
A0 = (pi/4)*(100E-3)^2;  % m^2 
At = (pi/4)*(20E-3)^2;  % m^2 
L = 1.0;    % m 
rho = 2380*9.81;   % N/m^3 
 
echo on 
N = 2;     % Number of elements  
% Change the number of elements and see the how the accuracy  
% of the solution improves. You need to run the script many  
% times by changing the number of element N, above. 
% Note that the hold on graphics is on. 
echo off 
 
% Compute element length, area, k and force 
Le = L/N; 
for i = 1:N, 
 Atop = A0 -(A0-At)/N*(i-1); 
 Abot = A0 - (A0-At)/N*i; 
 A(i) = (Atop+Abot)/2; 
 x(i) = L/N*i; 
 k(i) = A(i)*E/Le; 
 F(i) = A(i)*Le*rho; 
end 
 
% Assembly of the stiffness matrix using k's. 
K = zeros(N,N); 
 
K(1,1) = k(1) + k(2); 
K(1,2) = -k(2); 
 
for i = 2:N-1, 
    K(i,i-1) = -k(i); 
 K(i,i) = k(i) + k(i+1); 
 K(i,i+1) = -k(i+1); 
end 
 
K(N,N-1) = -k(N); 
K(N,N) = k(N); 
 
% Solve for displacements {q}. It is a column vector. 
q = inv(K)*F'; 
 
plot([0 x],[0; q],'-w',x,q,'c.'); 
hold on 
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title('Effect of Discretization'); 
xlabel('X -- the length of the bar (m)'); 
ylabel('Axial deformation (m)'); 
____________________________________ 
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Figure 12 Effect of discretization in the lumped-model 

It can be seen in the figure that as the number of elements increases, the solution begins to converge to the 

exact solution. More about this in the next chapter. 


