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Theeponymoustower,asnotedbyitschiefarchitectAlexandre

Gustave Eiffel himself, overshadows his other structural

marvels. It is not just the beauty of the Tower that ought to

impress an onlooker but also its optimality. Eiffel, as we

explain in this article, excelled in using the material in the

most optimal way in many of his structures that include more

than 42 bridges and many buildings built in various parts of

the world. We also draw an analogy between Nature’s designs

and Eiffel’s designs in the way the material is arranged

hierarchically with different shapes at different scales. We

consider the Maria Pia Bridge and the Eiffel Tower to illus-

trate this point and highlight their optimal characteristics.

We argue that the structural designs of Eiffel & Co. have an

aesthetic appeal that emerges from the economic use of mate-

rial with their roots in rigorous engineering principles.

Introduction

In a Telugu science fiction novel (Anandobramha, 1984) written

by Yandamuri Virendranath, a teenager breaks down upon hear-

ing that the Eiffel Tower is destroyed in a terrorist attack. Holly-

wood movies too have not spared the Tower from fictional

attacks. From The War of the Worlds (1953), The Great Race

(1965), Mars Attacks (1996) to the recent GI Joe: the Rise of the

Cobra (2009), we come across heart-rending scenes of the col-

lapse of the Tower or the Tower under siege. An emotional

attachment to an inanimate structure may seem irrational. But,

even for an engineer who might see the Tower as merely a

wrought iron structure, it is difficult not to have an emotional

affinity to it when one appreciates its mathematical elegance and

structural ingenuity. The 300-metre tower, as it was called when

Eiffel & Co. built it in 1889, is adorned with optimality all
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through: in its skyline profile, the shape, the size, its foundation, and in its internal structure.

The Eiffel Tower has more holes than the material. It would not be an exaggeration to say that

every beam and rivet in this structure was put to good use by placing it just where it should be

to serve the overall purpose. The Tower is not the only creation of Alexandre Gustave Eiffel that

shows this optimality and elegance. This famous French engineer’s bridges and buildings too

were trend-setters in his time and they continue to be inspirational for structural designers who

want to achieve aesthetics and optimality simultaneously. In this article, we explain the notion

of optimality found in Eiffel’s structures by taking two of his famous designs, the Maria Pia

Bridge built on the river Douro in Porto, Portugal (Figure 1 on p.842), and the 300-metre tower

in Paris (Figure 5 on p.846). Before that, we present two fundamental concepts: the importance

of shape at different levels of detail and the role of optimisation in structural design.

Hierarchy of Shape in Structural Design

Macroscopic Shape

If we look around, we find beams and columns of different cross-sections. Some have

rectangular cross-section, some have I-sections, while the rest have other cross-sectional

shapes. Similarly, rotating shafts have circular solid or tubular cross-sections. We rarely find

rectangular cross-sections for rotating shafts. Why? Engineers have found that certain cross-

sections are better than others for certain loads: stretching/contracting, bending, and twisting

[1]. Take for instance, the twisting of a shaft. It does not make sense to put material at the centre

of a large circular cross-section when much of the shear stress occurs away from the centre of

the circle. Material, if it is put in the central portion, adds more load than it contributes to bearing

the stress. The best structure is one in which all the material is more or less equally stressed. A

shape that makes this possible can be considered optimal.

Shape specificity is not limited to cross-sections of beams, columns and shafts but is true in

general. Let us ask why ornate temple towers of southern India have truncated pyramidal shape

as they rise to great heights with masonry material. One can also ask why the great Egyptian

pyramids have the pyramidal shape. They all have those specific shapes perhaps because it is the

optimal use of material. A vertical structure such as a temple tower or a pyramid has more stress

at the bottom than at the top. So, making it a prism makes little sense. More material is needed

at the bottom and less as we go up the structure. But how should the cross-section size vary as

we move from the bottom to the top? Temple towers and pyramids follow linearly tapering

cross-section profile. The Eiffel Tower, on the other hand, has a curved profile. The arch in the

Maria Pia Bridge has nonlinearly varying depth and width. There is a reason for these shapes as

we shall see later in this article.
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Nature’s columns and beams are no different. Tree trunks have nearly circular solid or tubular

cross-sections. They too taper down as we move up from the bottom to the top. Nature’s other

columns – the legs of large animals such as elephants – have circular cross-section but they do

not taper. The legs of smaller animals including humans have a reverse taper. These ‘columns’

are mobile and their loading and end conditions are different from those of the trees; they are

attached to something on both the sides. Hence, the stress pattern is different and so is the

optimal shape.

If we look beyond just the external shape, we find specific shapes inside some structures. Nature

has many examples of this. A tree has a trunk from which branches emerge. Each branch has

sub-branches and then twigs. Leaves are attached to the twigs in the same as way as branches

to the trunk, sub-branches to a branch, and twigs to a sub-branch. There is a ‘fractal-like’

hierarchy here. There is a structural arrangement at different levels of detail within a structure.

We indeed call it a tree structure. The root system of plants and trees is no different. Sub-roots

emerge from the main root in much the same way. This particular divisional structure is dictated

by the need to let the water and nutrients diffuse into the roots with a large surface area and get

transported up the roots. Vasculature that provides for the blood flow in our bodies is similar.

This is a sign of hierarchy of shape in Nature’s structures that is easily visible at the macroscopic

level. And there is also shape-hierarchy at the microscopic level.

Microscopic Shape

When it comes to trees, there is more to it than meets the blinking eye. If we begin to look at the

internal structure of a tree trunk’s cross-section, we find more organization in terms of shape.

We see rings – a result of the seasonal growth pattern of the tree trunk. They are concentric

shells of increasing size with foam-like material in between. If we look at a vertical section with

a magnifying glass, we see fibres along the vertical axis of the trunk. Under a microscope, we

see wood cells of prismatic and other shapes. There is a pattern to the shape of the cells too. The

wood cells formed in the early part of the growing season have large cavities and thin walls

while those formed later have small cavities and thick walls. This is very different from

engineering materials we use. Metals and ceramics are homogeneous in the sense that they have

uniform distribution of material and possess no discernible shape or pattern unless we go to

much smaller scales. There are, on the other hand, a hierarchy of shapes and inhomogeneous

distribution in Nature’s materials.

Let us consider the internal structure of the materials that our bones are made of. There is the

outer part, the cortical or compact bone; and the inner part, the trabecular or cancellous bone.

The left side of Figure 1 shows the hierarchical structure of the compact bone. The basic units
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Figure 1. Shape-hierarchy in a

compact bone and the Eiffel

Tower: (a) Five hierarchical lev-

els of shape in compact bone

(adapted from [2]), (b) three lev-

els of shape-hierarchy in the

Eiffel Tower.

of this part of the bone are lamel-

lae, which are layered rings sur-

rounding Haversian canals that

carry the blood vessels. A

lamella is made of collagen fi-

bres, which are in turn made of

fibrils. A fibril comprises col-

lagen molecules and minerals.

As can be seen in the left col-

umn of Figure 1, there is a shape

inside a shape at five different

levels within the compact bone.

If we denote the number of lev-

els of detailed shape by n, the

hierarchy is said to be of level-

n. Hence, compact bone has

level-5 shape-hierarchy. The

shape and underlying material at each level has a purpose and it imparts special properties to the

overall structure [2]. What can an engineer do when forced to work with a single homogenous

material? Is shape-hierarchy a prerogative of only Nature? Eiffel’s structures tell us that

engineered structures too can have the shape-hierarchy.

Let us take another look at the Maria Pia Bridge and the Eiffel Tower. We should look beyond

the basic external shape to notice the criss-crossing beams. A closer look at a single beam

reveals that there are smaller criss-crossing elements within it. Eiffel’s structures have level-3

hierarchy of shape. Figure 2, which is a close-up of an arch in Eiffel’s famous viaduct – the

Garabit Viaduct – makes this point; so does the right column of illustrations in Figure 1 where

the shape-hierarchy of the Eiffel Tower is juxtaposed with that of the compact bone.

It appears that Eiffel was the first structural designer to exploit the shape-hierarchy. Today, it
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is not an uncommon feature. See, for example, the Howrah

Bridge located in Kolkata (Figure 3). This too has a level-

3 shape-hierarchy. In fact, it has been observed that in the

design of light-weight structures as well as engineered

materials with voids, significant enhancement in stiffness

for a given mass is achieved because of shape-hierarchy

[2]. Thus, there is a correlation between optimality and

shape-hierarchy.

Next, we discuss the optimality of shape in Eiffel’s

structures after introducing a few mathematical concepts of optimal structural design.

Optimal Structural Design

Philosophically, optimisation is a word that is said to have originated from optimism. The

Merriam–Webster dictionary defines optimism as “an inclination to put the most favourable

construction upon actions and events or to anticipate the best possible outcome”. The process

Figure 2. A close-up view of Garabit Viaduct shows level-

3 shape-hierarchy. At level 1, we have the arch shape and

we see criss-crossing beams at next two levels with

smaller sizes just like in the Eiffel Tower.
Adapted from www.panoramio.com.

Figure 3. Shape-hierarchy in the Howrah Bridge, Kolkata. The overall iconic shape of the bridge is

one level. Within that we see cross-beams, which is the second level. Some of those cross-beams

have smaller cross-beams within them, which is the third level.
Adapted from http://www.fotothing.com.
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of optimisation aims for the same. Let us see this in the context of optimal structural design. We

aim to find the best design among all those that satisfy certain requirements. Let us say that we

want to design a bridge over a river with the following requirements. It has to span a certain

length between the two banks of the river. It needs to be of a certain height above the river. It

should be strong enough to bear, in addition to its own weight, the load that will act on it due to

vehicles that pass over it and the load due to wind. It should be of certain stiffness. One might

also stipulate that it be made of a certain material, say iron. Many bridges can be conceived to

meet these requirements. In order to choose the best among them, we need to define a criterion.

Let that be the weight of the bridge. Now, we can pose an optimal design problem wherein we

want to minimize the weight of the bridge subject to constraints as per the aforementioned

requirements. See Box 1 where such a problem is written as a general optimisation problem.

The symbol f in Box 1 defines the objective criterion. In the case of the bridge, it is the weight.

Equality constraints may come from the span of the bridge and the height of the bridge.

Inequality constraints come from the stiffness and strength considerations. We want the

maximum stress to be lower than the strength of the material and we want the bridge to be stiff

enough to have its deflection less than a stipulated value. The objective criterion and constraints

are shown to be functions of x = {x
1
, x

2
, x

3
, …, x

p
}, which we call the design variables. An

optimisation algorithm would find the numerical values of these variables so as to minimize f

while satisfying the constraints. But what are these variables? They decide the geometric form

of the structure, the bridge in our case.

The geometric form of a structure can be looked at three different levels: topology, shape, and

size. Let us consider a hypothetical bridge design problem shown in Figures 4a. It has two

supports and two loads. Let us denote the support points as S
1

and S
2
, and the loading points as

L
1

and L
2
. These can be interconnected in many ways to transfer the load to the supports.

min f(x)  Objective criterion
x

subject to: g
i
(x)  0 i = l.. n  Inequality constraints

h
j
(x) = 0 j = 1.. m  Equality constraints

x
l
 x  x

u
 Bounds on variables

An optimization problem in general has the above form and aims at minimizing an objective criterion subject

to a set of constraints by selecting a proper design variable. The optimal value of the design variable x is the

solution of the optimization problem.

Box 1. An Optimisation Problem
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Figure4. Hierarchyinstruc-

tural optimisation: (a) A

hypothetical specification

of a structural optimisation

problem, (b) connectivity

amongdifferentportionsof

interest in a structure; one

view of topology, (c) an-

other view of topology as

the number of holes, (d)

shapesof thesegments, (e)

shapesoftheholes,(f)sizes

of thesegments’cross-sec-

tion profiles, and (g) sizes

of the holes.

Figure 4b shows a few possibilities. The last two possibilities also consider an intermediate

point not specified in the problem but a bridge designer is free to do it if that helps. If there are

more intermediate points, there will be many more connections. Among all those, which

connection is optimal? The process of finding this is called topology optimisation. Another

view of topology optimisation is offered in Figure 4c. Here, we ask how many holes there can

be in the geometric form of the bridge.

After the topology is known, we want to give optimal shapes to the connections (Figure 4d) or

we want to determine the optimal shapes of the holes (Figure 4e). We call this shape

optimisation. The next step after this is to optimise the sizes. Figure 4f shows that the size along

the shapes can be varied in numerous ways. Figure 4g shows this in a different way by varying

the sizes of the holes whose shapes are now determined. Here lies the size optimisation. In this,

we define the structural design problem hierarchically. But this is only qualitative hierarchy and

not quantitative hierarchy that we discussed in the last section.
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Based on the type of structural optimisation we want to do (i.e., topology, shape, or size), we

choose the design variables, x = {x
1
, x

2
, x

3
, …, x

p
}, accordingly. Let us consider the simple one

first, the size optimisation. Here, we designate some parameters (widths, thicknesses, lengths,

etc.) as the design variables assuming that we know the shape and topology. In shape

optimisation, we need to use a different set of variables to vary shapes to find the optimum

shape. Let us consider the shape of Eiffel’s arch in his Garabit Viaduct or the Maria Pia Bridge.

As can be seen in Figure 5, he varied it in two ways: the depth of the arch is zero at the fixed

supports and widens gradually to the centre where it is the largest. The reverse is true of the

width of the arch. The width is most narrow at the centre and widens to a maximum value at the

fixed supports. Such shapes can be computed by posing the shape optimisation as a 'calculus of

variations' problem.

Defining variables for topology optimisation is tricky. If we think of it as finding the optimal

connectivity as in Figure 4b, it becomes a combinatorial optimisation problem. Instead, it can

be posed as a continuous optimisation problem. The clue for this lies in the way we interpret

materials with structural hierarchy as new materials with homogeneous properties. In general,

even if there is a microscopic structure for a material, we can write a material property for a

structure (whose size is much larger than the microscopic shape) using a simple approximate

relationship. Let us take Young’s modulus, the basic material property that relates stress and

strain for an elastic material. Let us denote this for the base material by E
0
. Now, for the nth-level

hierarchy, the homogenous Young’s modulus E
n

can be written as [2]

E
n

= k pr,

where k and r depend on the shape of the microstructure and  is the volume fraction of the

Figure 5. Shape variation over-

laid in solid white curves in the

arch found in Garabit Viaduct.

Both the width and depth are

varied but differently. Widest

width is at the fixed supports

while the widest depth is at the

centre.
Adapted from www.panoramio.com.
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material at the microscopic shape that has holes in it. By following this, we can choose  as the

design variable for topology optimisation. We will then interpolate homogeneous Young’s

modulus E as follows by choosing k = 1.

E = E
0
r.

We assume that when = 1, there will be material at that point in the structure; and when =

0, there will be a hole. By letting  vary between 0 and 1 at every point in the structure during

the process of optimisation, we can get any geometric form – not just topology, shape, or size

one at a time but all of them at the same time. It is possible that  may stay in between 0 and 1.

Then, there are numerical tricks to push them to 0 or 1. Usually, when r is greater than or equal

to three, we get 0–1 designs without the ‘intermediate’ material [3].

Figure 6a shows a problem solved in the manner described above wherein material can be

optimally distributed within a given space. It shows the result of the optimum geometric form

of a structure that ought to be the stiffest under a given load with a given amount of material. The

structure is attached to a fixed circle on the right and the load acts at a distance away from the

circle. In the black and white image of Figure 6a, = 1 where black colour (material present)

is shown and = 0 where white (empty; material absent) is shown. This is the optimal structural

form predicted by the optimisation algorithm for  at every point in the rectangular space.

Figure 6b shows an analytical solution given by A G M Michell in 1904 in a classic paper

entitled ‘On the Economy of Material in Frame Structures’ [4]. One can see the similarities in

topology between Figures 6a and 6b. But there are also differences. Figure 6b indicates that

there can be many criss-crossing spiraling beams, in fact, as many as one can manufacture in as

(a)

Figure 6. (a) Optimal geometric form given by an optimisation algorithm. (b) Optimal distribution

of a framed structure for a benchmark problem as given by A G M Michell in 1904 [4].

(b)
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thin a width as possible. The optimal form shown in Figure 6a is a practical solution that can be

realized.

Armed with a technique to compute the optimal structural form, we will now proceed to

examine optimality in the Maria Pia Bridge designed and built by Eiffel during 1875–1877.

Optimality of the Maria Pia Bridge

In 1875, the Royal Portuguese Railroad Company invited proposals to build a bridge over the

river Douro between Lisbon and Porto. It entailed many challenges. The river was 20 m deep

and the river bed had loose soil and the currents were rapid. So, no pier could be constructed in

the river. It meant that the central span had to be 160 m long, the longest at that time for a non-

suspension bridge. Eiffel’s company was still young at that time. Yet, among the four proposals

submitted, Eiffel’s company quoted the least. To be precise, Eiffel quoted 0.965 million francs

while the next closest bid was 1.41 million francs. The other bigger companies had quoted

nearly twice and thrice of Eiffel’s quote. Among the four designs submitted, Eiffel’s design was

also clearly the most beautiful. It was selected by the Portuguese government.

Eiffel got it built in less than two years. As shown in Figure 1 on p.842, it had an arch in the

middle that supported the railroad with piers that supported it away from the river banks. It had

a total length of 352.75 m and a height of 62.40 m. When we examine the other three design

proposals [5], we see that Eiffel’s Bridge used the least amount of material. In order to

investigate this, we ran an optimisation program that optimally determines the geometric form

of a structure using the method described in the previous section.

In Figure 7a, we show the specifications of the problem in two dimensions even though a bridge

is a three-dimensional structure. We traced the shape of the land available for fixing the bridge

on either side of the banks of the river on a photograph and took its size as shown in Figure 7a.

The size we took is not exactly the same as what Eiffel had considered but the proportions are

preserved. We considered uniform loading on the bridge throughout its span. We used

properties of steel for Young’s modulus (210 GPa) and Poisson’s ratio (0.3). The available

space was divided into 6,764 quadrilateral elements and a design variable was assigned to each

of them. The algorithm determines the  value for them. The solution given by the optimisation

algorithm is shown in Figure 7b for 35 % material constraint to fill the space below the straight

railroad plate and up to the landmass on the banks. Its likeness to Eiffel’s design (Figure 3c) is

striking, some minor differences notwithstanding. The other three proposed designs were quite

different in their form. One can only wonder how Eiffel and his engineers thought of an

optimum form more than a century before a mathematical method could be developed to predict

the optimal geometric form for the stiffest structure with a given amount of material. The small
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difference in the number, location, and shape of the piers can be attributed to the different loads

and manufacturing considerations Eiffel might have taken into account. Above all, the design

of Eiffel company’s engineers Theophile Seyrig and Henry de Dion also preserved the beauty

of the landscape of the countryside with its elegant arch and mostly empty space inside and

under the bridge. We have already discussed the level-3 shape-hierarchy in this bridge.

Next, we consider the optimality of shape of the Eiffel Tower itself.

The Optimal Shape of the Eiffel Tower

In the United States of America, Clarke, Reeves and Co. had proposed to build a tower for

USA’s Centennial. The tower was to be made of wrought iron and was to be 1000 ft (305 m) tall.

But it never happened because of lack of funds. Perhaps inspired by this idea of building a tower

that is twice as tall as the tallest at that time, the Washington Monument in USA’s capital city,

(a)

(b)

(c)

Figure 7. The Maria Pia Bridge problem in two dimensions: (a) The specifications for load, space

available, and where the bridge structure could be fixed, (b) optimal geometric form given by the

algorithm, (c) the design submitted by Eiffel’s young company (redrawn from [5]).
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Eiffel took up this task [6]. Two engineers of Eiffel and Co., Emile Nouguier and Maurice

Koechlin, were thinking of building a tall tower for some years by then. They came up with an

idea for a 300 m tall tower when they were discussing possible attractions for the Centennial

Exposition of Paris in 1889. It was in these minds that the 300-metre tower was envisioned.

They came up with a design of a great pylon with four lattice girders standing apart at its base

and gave it an architectural touch with the help of the company’s chief architect Stephen

Sauvestre. He gave the pylon its tower form with the arches at the bottom, and a platform at the

first level. The year was 1884, and still only a tentative idea, but a good one to entice a great and

daring builder like Gustave Eiffel. He had it patented in the same year.

Coincidentally or maybe because of the strong recommendations of Eiffel, the French govern-

ment organised a competition for the construction of a 300 metre tower in Champ de Mars in

1886. Eiffel and Co. won this competition among more than 100 submissions. The tower won

the competition for its optimality and many uses elaborated by Eiffel and Co. It was to be made

of wrought iron that was known for its high strength to weight ratio. Its construction began by

January 1887 and was completed by March 31, 1889, two months ahead of schedule with a few

weeks to spare before the Centennial Exposition began in Paris.

Earlier in this article, we had commented on the shape of free-standing structures – human-made

and those of Nature. Let us now discuss how the optimal shape was obtained by Eiffel’s

engineers. They were very familiar with the construction of piers in bridges wherein the wind

loading was the major load on the structure. In the case of the piers they had to balance it against

the load of the wind on the viaduct rather than on the pier itself, which is negligible. But in the

case of the tower they had to take only the effect of the wind on the pier into account. Eiffel notes

that the elaborate truss structure would hardly be efficient and hence one has to do away with

the cross-beams (trellis elements) by shaping the four uprights linked with a few interspersed

horizontal belts instead of the trellis bars [7].

In order to understand how they managed to remove the

trellis elements among the four vertical arches, let us

consider a simple truss structure shown in Figure 8. The

wind loading is lumped at the vertices shown as P
1
, P

2
,

and P
3
. Let their resultant force be P

R
whose line of

action is shown in the figure. Members BE and CD are

Figure 8. A simple truss example to illustrate how cross-

beams (trellis elements) can be eliminated as per the

reasoning used by Eiffel’s engineers. (Redrawn from [7])



861RESONANCE  September 2009

GENERAL  ARTICLE

inclined such that they intersect the line of action of the resultant at A. Let the reaction forces

at the section MN be R
1
, R

2
, and R

3
. Since we have a structure here, the net moment at any point

must be zero. So considering the moment about A, one can easily see that the moments due to

R
1
, R

3
, and P

R
must be zero as these pass through the point A. So, all that is left is the moment

due to R
2
, which must be zero. This implies that R

2
must be zero. Thereby one can do away with

the trellis element EC. This way, it is possible to construct a tower that does not obstruct the

view behind it.

With the above reasoning, Eiffel and Co. considered two worst cases of loading: (i) 300 kgf per

square metre against the height of the tower, and (ii) linearly varying intensity of 200 kgf per

square metre from the bottom to the 400 kgf per square metre at the summit. They had

graphically obtained the profile of the tower. In a recent paper entitled ‘Model equations for the

Eiffel Tower profile: historical perspective and new results’ [8], Weidman and Pinelis devel-

oped a nonlinear integro-differential equation modeled along the lines of Eiffel’s discussion in

his proposal and proved that the skyline profile is a solution to the equation.

To illustrate the optimality of the shape of the Eiffel Tower, we ran a shape optimisation

program for maximizing the stiffness against the two loadings that were considered by Eiffel

and Co. We modeled the entire structure as a continuum that has both the properties of a bar and

a beam (a frame element as it is called in mechanics) and possessing square cross-section. We

used the material properties of steel. The optimal shape profiles we obtained are shown in

Figure 9.

Figure 9a corresponds to a linearly varying wind load and self-weight and Figure 9b to a steady

wind load and self-weight. As remarked by Eiffel and Co. in their proposal, the shape is more

(a) (b)

Figure 9. Optimal shapes

for the skyline profile of the

Eiffel Tower: (a) for linear

variation of the wind load,

(b) for uniform wind load.

Both cases consider the

self-weight.
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or less the same for both the conditions. It should be remarked that Eiffel considered the worst

possible wind condition and designed the entire structure according to it. Our shape optimisation

illustrates the optimality of the gross outer shape and not the inner structure that Eiffel had to

consider. As noted earlier, Eiffel Tower has level-3 shape-hierarchy and is indeed optimal in its

overall shape and its material usage to create that shape. By creating holes, the wind load was

reduced too.

Optimality and Aesthetics

Eiffel’s optimal structures were not limited to bridges and his famous tower. His company had

designed and built many buildings that include railway stations, schools, religious places of

worship, houses, and observatories (see Figure 10). In all of them, he paid attention to the way

materials were used. Most of his structures had the mark of shape-hierarchy and they all used

as small an amount of material as was needed. Perhaps that is why his company won many

competitive bids to build major structures. It is important to note that Eiffel’s company used

innovative techniques in building the structures. Most were completed within two years and

were always in time or ahead of schedule and within the initially projected budget. Out of this

optimality, Eiffel also achieved beauty.

Eiffel’s Tower and his many bridges were appreciated for their aesthetic value. In a period that

had mostly masonry structures, Eiffel exposed the ironwork whose elegant and optimal shapes

evoked aesthetic appeal. Of course, there were critics who found his structures, including the

Tower, ugly. Eiffel defended himself by saying that “the intention of a building should be

openly declared; the various materials should be used in a deliberate way; why should the

Figure 10. Observatory in Nice, France, designed by Charles Garnier, the architect, and its dome

designed by Gustave Eiffel. The right-side picture shows the inside view of the dome that could be

turned by hand, even by a child, because of a floating ring designed by Eiffel. Level-2 shape-

hierarchy is visible when we look at the semicircular arches used in the dome.

Photographs adapted from www.wikimedia.org.
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industrial nature of a building be disguised, even in the middle of a city?” [5]. This defence was

aimed at the Budapest railway station that Eiffel’s company built between 1875-1877. Here, he

used masonry, iron, and glass to achieve a grandiose structure (see Figure 11) that showed the

interior through the glass-paneled gable that had the ironwork exposed to the outside.

It is pertinent here to mention a comparison made between the Eiffel Tower and neo-

impressionistic paintings of Georges-Pierre Seurat (1859–1891), a French painter. Seurat

pioneered a technique of juxtaposing tiny colored dots which remain close to each other but

separate and yet evoke a sense of continuity and elegance when perceived by human eyes.

Seurat was influenced by the scientific principles of perception of color and achieved an

amalgamation of science, emotion, and beauty. Therefore, the analogy between Seurat’s

paintings and the Eiffel Tower, and perhaps all his structures, is very apt. In the words of an art-

historian, Meyer Schapiro [5], this analogy comes out most clearly: “…the constructions of the

(Eiffel’s) immense monument out of small exposed parts, each designed for its place, and

forming together out of the visible crisscross and multiplicity of elements a single airy whole of

striking simplicity and elegance of shape, was not unlike his own (Seurat’s) art with its

summation of innumerable tiny units into a large clear form which retained the immaterial

lightness evident in the smaller parts…”. Eiffel’s designs continue to appeal to the aesthetic eye

as much as to the engineer’s eye that also cares about optimal use of material and resources.

Closure

Optimality runs through most of Eiffel’s works that included not just his famous tower but also

many bridges and buildings. The shapes of his structures, and more importantly, the internal

shape-hierarchy of his structures remains his hallmark. By describing the shape hierarchy found

Figure 11. Pest Railway Station in Budapest, Hungary. Left: exterior, right: interior.
Adapted from www.dkimages.com.
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in Nature’s designs, we presented an argument that Eiffel’s structures too are optimal. To

further emphasize the point, we discussed the optimality of two famous structures of Eiffel. The

Maria Pia Bridge’s geometric form was nearly reproduced by an optimisation algorithm we

described briefly in this article. We also included the result of shape optimisation of a vertical

structure to show the resemblance between Eiffel Tower’s skyline profile and the optimum

shape solution.

Optimal traits of Eiffel were not limited to his structural designs. His manufacturing techniques,

assembly of bridges, site-planning and management were also optimal in their own right. For

instance, he found it economical and efficient to serve subsidised lunch to construction workers

on the first level of the Tower rather than let them come down and then go up during the Tower’s

construction. His four-volume biography meticulously put together by himself projected his

accomplishments (sometimes at the expense of not giving due credit to his collaborators) can

also be thought of as an optimal exercise in ensuring his preeminence for posterity. He had

unfulfilled dreams and a few failures too. His company could not build the Panama Canal for

which he had a grand design of a flowing staircase. The other aborted projects included a fully

submerged bridge across the English Channel, an observatory on Mont-Blanc, and the metro

system for the city of Paris. Eiffel did not lose heart in such failures; like a true optimiser or an

optimist he moved on to other endeavours. He invented new uses for his tower in terms of

commercially rented space and, more importantly, for his scientific experiments on estimating

aerodynamic loads, meteorology, and radio communications. His mind, perhaps, always found

an optimal solution for the objective criterion no matter however severe the constraints that life

brought to him. His contributions made in the belle epoch (beautiful era) of France are long-

lasting. His bridges and buildings are either historic landmarks or are still in use across the world

in South America, China, Philippines, and Vietnam in addition to the continental Europe.

Acknowledgments

The authors thank C V Ramamurthy and G Bharathi for their assistance in preparing some of the

figures used in this article.

Suggested Reading

[1] M F Ashby, Materials and Shape, Acta Metallurgica et Materialia, Vol.39, No.6, pp.1025–1039, 1991.

[2] R Lakes, Materials with Structural Hierarchy, Nature, Vol.361, pp.511–515, 1993.

[3] M P Bendsøe and O Sigmund, Topology Optimisation: Theory, Methods, and Applications, Springer, New

York, 2003.

[4] A G M Michelle, The Limits of Economy of Material in Frame-Structures, Philosophical Magazine Series 6,

1941–5990,Vol.8, No.47, pp. 589–597, 1904.

[5] H Loyrette, Gustave Eiffel, Rizzoli International Publications Inc., New York, 1985.



865RESONANCE  September 2009

GENERAL  ARTICLE

[6] B Pezzi, Eiffel Tower, Weigl Publishers Inc., New York, 2008.

[7] C Roland and P Weidman, Proposal for an Iron Tower: 300 metres in height, Architectural Reviews

Quarterly, Vol.8, Nos 3-4, pp.215–245, 2004.

[8] P Weidman and I Pinelis, Model Equations for the Eiffel Tower profile: historical perspective and new

results, Competes Rendus Mecanique, Vol.332, No.7, pp.571–584, 2004.

Address for Correspondence: M Meenakshi Sundaram and G K Ananthasuresh, Mechanical Engineering, Indian

Institute of Science, Bangalore 560 012, India.

Email: meenaskhi@mecheng.iisc.ernet.in, suresh@mecheng.iisc.ernet.in

*****

As a tribute to our creator we made an optimal statue of him ..




