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Gustave Eiffel and his Optimal Sructures

M Meenakshi Sundaram and G K Ananthasuresh

Theeponymoustower , ashoted by itschief ar chitect Alexandre
Gustave Eiffel himself, overshadows his other structural
marvels. It isnot just the beauty of the Tower that ought to
impress an onlooker but also its optimality. Eiffel, as we
explain in this article, excelled in using the material in the
most optimal way in many of hisstructuresthat includemore
than 42 bridges and many buildings built in various parts of
theworld. Wealsodraw an analogy between Natur e’ sdesigns
and Eiffel’s designs in the way the material is arranged
hierarchically with different shapes at different scales. We
consider the Maria Pia Bridge and the Eiffel Tower toillus-
trate this point and highlight their optimal characteristics.
Wearguethat the structural designs of Eiffel & Co. havean
aestheticappeal that emergesfrom theeconomicuseof mate-
rial with their rootsin rigorous engineering principles.

Introduction

InaTelugu sciencefiction novel (Anandobramha, 1984) written
by Y andamuri Virendranath, ateenager breaks down upon hear-
ing that the Eiffel Tower isdestroyed in aterrorist attack. Holly-
wood movies too have not spared the Tower from fictional
attacks. From The War of the Worlds (1953), The Great Race
(1965), Mar s Attacks (1996) to the recent Gl Joe: the Rise of the
Cobra (2009), we come across heart-rending scenes of the col-
lapse of the Tower or the Tower under siege. An emotional
attachment to an inanimate structure may seem irrational. But,
even for an engineer who might see the Tower as merely a
wrought iron structure, it is difficult not to have an emotional
affinity to it when one appreciatesits mathematical elegance and
structural ingenuity. The 300-metre tower, asit was called when
Eiffel & Co. built it in 1889, is adorned with optimality all
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through: in its skyline profile, the shape, the size, itsfoundation, and initsinternal structure.

The Eiffel Tower has more holes than the material. It would not be an exaggeration to say that
every beam and rivet in this structure was put to good use by placing it just where it should be
toservetheoveral purpose. The Tower isnot theonly creation of Alexandre Gustave Eiffel that
shows this optimality and elegance. This famous French engineer’ s bridges and buildingstoo
were trend-settersin histime and they continueto beinspirational for structural designerswho
want to achieve aesthetics and optimality simultaneously. Inthisarticle, we explain the notion
of optimality found in Eiffel’s structures by taking two of his famous designs, the Maria Pia
Bridge built ontheriver Douro in Porto, Portugal (Figure 1 onp.842), and the 300-metre tower
inParis(Figure5on p.846). Beforethat, we present two fundamental concepts. theimportance
of shape at different levels of detail and the role of optimisation in structural design.

Hierarchy of Shapein Structural Design
Macroscopic Shape

If we look around, we find beams and columns of different cross-sections. Some have
rectangular cross-section, some have I-sections, while the rest have other cross-sectional
shapes. Similarly, rotating shafts have circular solid or tubular cross-sections. We rarely find
rectangular cross-sections for rotating shafts. Why? Engineers have found that certain cross-
sections are better than others for certain loads: stretching/contracting, bending, and twisting
[1]. Takefor instance, the twisting of ashaft. It does not make senseto put material at the centre
of alarge circular cross-section when much of the shear stress occurs away from the centre of
thecircle. Material, if itisputinthecentral portion, addsmoreloadthanit contributesto bearing
the stress. The best structureisonein which all the material ismore or less equally stressed. A
shape that makes this possible can be considered optimal.

Shape specificity is not limited to cross-sections of beams, columns and shafts but is true in
general. Let usask why ornatetempletowers of southern Indiahavetruncated pyramidal shape
as they rise to great heights with masonry material. One can also ask why the great Egyptian
pyramidshavethepyramidal shape. They all havethose specific shapes perhapsbecauseitisthe
optimal useof material. A vertical structuresuch asatempletower or apyramid hasmore stress
at the bottom than at the top. So, making it a prism makeslittle sense. More material is needed
at the bottom and less as we go up the structure. But how should the cross-section size vary as
we move from the bottom to the top? Temple towers and pyramids follow linearly tapering
cross-section profile. The Eiffel Tower, onthe other hand, hasacurved profile. Thearchinthe
MariaPiaBridge has nonlinearly varying depth and width. Thereisareason for these shapesas
we shall seelater in thisarticle.
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Nature’ s columns and beams are no different. Tree trunks have nearly circular solid or tubular
cross-sections. They too taper down as we move up from the bottom to the top. Nature’ s other
columns—the legs of large animals such as el ephants — have circular cross-section but they do
not taper. Thelegs of smaller animalsincluding humans have areversetaper. These‘ columns
are mobile and their loading and end conditions are different from those of the trees; they are
attached to something on both the sides. Hence, the stress pattern is different and so is the
optimal shape.

If welook beyond just theexternal shape, wefind specific shapesinsidesome structures. Nature
has many examples of this. A tree has a trunk from which branches emerge. Each branch has
sub-branches and then twigs. L eaves are attached to the twigs in the same as way as branches
to the trunk, sub-branches to a branch, and twigs to a sub-branch. There is a ‘fractal-like’
hierarchy here. Thereisastructural arrangement at different levelsof detail within astructure.
Weindeed call it atreestructure. Theroot system of plants and treesisno different. Sub-roots
emergefromthemain root in muchthe sameway. Thisparticular divisional structureisdictated
by the need to | et the water and nutrients diffuseinto the rootswith alarge surface areaand get
transported up theroots. Vascul ature that providesfor the blood flow in our bodiesis similar.
Thisisasignof hierarchy of shapein Nature' sstructuresthat iseasily visibleat the macroscopic
level. And there is also shape-hierarchy at the microscopic level.

Microscopic Shape

When it comesto trees, thereismoretoit than meetstheblinking eye. If we begintolook at the
internal structure of atree trunk’ s cross-section, we find more organization in terms of shape.
We see rings — a result of the seasonal growth pattern of the tree trunk. They are concentric
shellsof increasing sizewith foam-like material in between. If welook at avertical sectionwith
amagnifying glass, we see fibres along the vertical axis of the trunk. Under a microscope, we
seewood cellsof prismatic and other shapes. Thereisapattern to the shapeof thecellstoo. The
wood cells formed in the early part of the growing season have large cavities and thin walls
while those formed later have small cavities and thick walls. This is very different from
engineering materialswe use. M etal sand cerami cs are homogeneousin the sensethat they have
uniform distribution of material and possess no discernible shape or pattern unless we go to
much smaller scales. There are, on the other hand, a hierarchy of shapes and inhomogeneous
distribution in Nature' s materials.

Let us consider the internal structure of the materials that our bones are made of. Thereisthe
outer part, the cortical or compact bone; and the inner part, the trabecular or cancellous bone.
Theleft side of Figure 1 showsthe hierarchical structure of the compact bone. The basic units
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Figure 1. Shape-hierarchy in a

compact bone and the Eiffel — P
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Tower: (a) Five hierarchical lev-

els of shape in compact bone

(adapted from [2]), (b) three lev-

els of shape-hierarchy in the

Eiffel Tower. VR ) \ | &
/ : =

of thispart of thebonearelamel -
lae, which arelayered ringssur-
rounding Haversian canals that
carry the blood vessels. A
lamella is made of collagen fi-
bres, which arein turn made of
fibrils. A fibril comprises col-
lagen molecules and minerals.
As can be seen in the left col-
umnof Figure 1, thereisashape
inside a shape at five different
level swithin the compact bone.
If we denote the number of lev-
els of detailed shape by n, the
hierarchy is said to be of level- -
n. Hence, compact bone has
level-5 shape-hierarchy. The
shapeand underlying material at each level hasapurposeanditimpartsspecial propertiestothe
overall structure [2]. What can an engineer do when forced to work with a single homogenous
material? Is shape-hierarchy a prerogative of only Nature? Eiffel’s structures tell us that
engineered structurestoo can have the shape-hierarchy.

L et ustake another 0ok at the Maria Pia Bridge and the Eiffel Tower. We should look beyond
the basic external shape to notice the criss-crossing beams. A closer ook at a single beam
revealsthat there are smaller criss-crossing elementswithin it. Eiffel’ s structures have level -3
hierarchy of shape. Figure 2, which is a close-up of an arch in Eiffel’s famous viaduct — the
Garabit Viaduct — makesthis point; so doesthe right column of illustrationsin Figure 1 where
the shape-hierarchy of the Eiffel Tower is juxtaposed with that of the compact bone.

It appearsthat Eiffel wasthe first structural designer to exploit the shape-hierarchy. Today, it
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Figure 2. A close-up view of Garabit Viaduct shows level-
3shape-hierarchy. At level 1, we have the arch shape and
we see criss-crossing beams at next two levels with

smaller sizes just like in the Eiffel Tower.
Adapted from www.panoramio.com.

isnot anuncommon feature. See, for example, theHowrah
Bridgelocatedin Kolkata(Figure 3). Thistoo hasalevel-
3 shape-hierarchy. Infact, it hasbeen observed that in the
design of light-weight structures as well as engineered
materia swith voids, significant enhancement in stiffness
for agiven mass is achieved because of shape-hierarchy
[2]. Thus, there is a correlation between optimality and
shape-hierarchy.

Next, we discuss the optimality of shape in Eiffel’s
structures after introducing afew mathematical concepts of optimal structural design.

Optimal Structural Design

Philosophically, optimisation is a word that is said to have originated from optimism. The
Merriam—Webster dictionary defines optimism as “an inclination to put the most favourable
construction upon actions and events or to anticipate the best possible outcome”. The process

Figure 3. Shape-hierarchy in the Howrah Bridge, Kolkata. The overall iconic shape of the bridge is
one level. Within that we see cross-beams, which is the second level. Some of those cross-beams

have smaller cross-beams within them, which is the third level.
Adapted from http://www.fotothing.com.
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Box 1. An Optimisation Problem

min f(x) — Objective criterion
X

subjectto: g, (x) <0 i=l.n — Inequality constraints
hj x)=0 j=1.m — Equdity constraints
X, XX, — Boundson variables

An optimization problemin general has the above form and aims at minimizing an objective criterion subject
to aset of constraints by selecting aproper design variable. The optimal value of the design variable x isthe
solution of the optimization problem.

of optimisationaimsfor thesame. L et usseethisin the context of optimal structural design. We
aimto find the best design among all those that satisfy certain requirements. L et us say that we
want to design a bridge over ariver with the following requirements. It has to span a certain
length between the two banks of the river. It needs to be of a certain height above theriver. It
should be strong enough to bear, in addition to its own weight, theload that will act onit dueto
vehiclesthat pass over it and the load due to wind. It should be of certain stiffness. One might
also stipulate that it be made of acertain material, say iron. Many bridges can be conceived to
meet these requirements. In order to choose the best among them, we need to define acriterion.
Let that be the weight of the bridge. Now, we can pose an optimal design problem wherein we
want to minimize the weight of the bridge subject to constraints as per the aforementioned
requirements. See Box 1 where such a problem is written as ageneral optimisation problem.

Thesymbol f inBox 1 definesthe objective criterion. In the case of the bridge, it istheweight.
Equality constraints may come from the span of the bridge and the height of the bridge.
Inequality constraints come from the stiffness and strength considerations. We want the
maximum stressto be lower than the strength of the material and we want the bridge to be stiff
enoughto haveitsdeflectionlessthan astipulated value. The objectivecriterionand constraints
are shown to be functions of x = {x,, X,, X;, ..., xp}, which we call the design variables. An
optimisation algorithm would find the numerical values of these variables so asto minimize f
while satisfying the constraints. But what are these variables? They decide the geometric form
of the structure, the bridge in our case.

The geometric form of astructure can belooked at three different levels: topology, shape, and
size. Let us consider a hypothetical bridge design problem shown in Figures 4a. It has two
supports and two loads. L et us denote the support pointsas S, and S,, and the loading points as
L, and L,. These can be interconnected in many ways to transfer the load to the supports.
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Figure4. Hierarchyin struc-
; :2 tural optimisation: (a) A
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Figure 4b shows a few possibilities. The last two possibilities also consider an intermediate
point not specified in the problem but abridge designer isfreeto doit if that helps. If thereare
more intermediate points, there will be many more connections. Among all those, which
connection is optimal ? The process of finding this is called topology optimisation. Another
view of topology optimisation is offered in Figure 4c. Here, we ask how many holes there can
be in the geometric form of the bridge.

After the topology is known, we want to give optimal shapesto the connections (Figure 4d) or
we want to determine the optimal shapes of the holes (Figure 4€). We call this shape
optimisation. The next step after thisisto optimisethe sizes. Figure 4f showsthat thesizealong
the shapes can be varied in numerousways. Figure 4g showsthisin adifferent way by varying
the sizes of the holes whose shapes are now determined. Hereliesthe size optimisation. Inthis,
wedefinethestructural design problemhierarchically. But thisisonly qualitative hierarchy and
not quantitative hierarchy that we discussed in the last section.
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Figure 5. Shape variation over- [
laid in solid white curves in the
arch found in Garabit Viaduct.
Both the width and depth are
varied but differently. Widest
width is at the fixed supports
while the widest depth is at the

centre.
Adapted from www.panoramio.com.

Based on the type of structural optimisation we want to do (i.e., topology, shape, or size), we
choosethedesign variables, x = {x,, X,, X,, ..., X }, accordingly. L et usconsider the smple one
first, the size optimisation. Here, we designate some parameters (widths, thicknesses, lengths,
etc.) as the design variables assuming that we know the shape and topology. In shape
optimisation, we need to use a different set of variables to vary shapes to find the optimum
shape. Let us consider the shape of Eiffel’ sarchin hisGarabit Viaduct or the MariaPiaBridge.
As can be seen in Figure 5, he varied it in two ways: the depth of the arch is zero at the fixed
supports and widens gradually to the centre where it is the largest. The reverseis true of the
width of thearch. Thewidthismost narrow at the centre and widensto amaximum val ue at the
fixed supports. Such shapes can be computed by posing the shape optimisation asa'cal culus of
variations' problem.

Defining variables for topology optimisation istricky. If we think of it as finding the optimal
connectivity asin Figure 4b, it becomes a combinatorial optimisation problem. Instead, it can
be posed as a continuous optimisation problem. The clue for this liesin the way we interpret
materials with structural hierarchy as new materials with homogeneous properties. In general,
even if there is amicroscopic structure for a material, we can write a material property for a
structure (whose size is much larger than the microscopic shape) using a simple approximate
relationship. Let us take Young's modulus, the basic material property that relates stress and
strainfor anelastic material. L et usdenotethisfor the basematerial by E,. Now, for thenth-level
hierarchy, the homogenous Y oung’s modulus E,, can be written as [ 2]

En:kppr’

where k and r depend on the shape of the microstructure and p is the volume fraction of the

856 W RESONANCE | September 2009




GENERAL | ARTICLE

(b)

Figure 6. (a) Optimal geometric form given by an optimisation algorithm. (b) Optimal distribution
of a framed structure for a benchmark problem as given by A G M Michell in 1904 [4].

material at the microscopic shapethat hasholesinit. By following this, we can choose p asthe
design variable for topology optimisation. We will then interpolate homogeneous Young's
modulus E as follows by choosing k = 1.

E=E,p".

We assume that when p =1, there will be material at that point in the structure; and when p =
0, therewill beahole. By letting p vary between 0 and 1 at every point in the structure during
the process of optimisation, we can get any geometric form — not just topology, shape, or size
oneat atime but all of them at the sametime. It is possible that p may stay in between O and 1.
Then, there are numerical tricksto pushthemto O or 1. Usually, whenr isgreater than or equal
to three, we get 0-1 designs without the ‘intermediate’ material [3].

Figure 6a shows a problem solved in the manner described above wherein material can be
optimally distributed within a given space. It shows the result of the optimum geometric form
of astructurethat ought to bethe stiffest under agivenload with agiven amount of material. The
structure is attached to afixed circle on theright and the load acts at a distance away from the
circle. In the black and white image of Figure 6a, p = 1 where black colour (material present)
isshown and p = 0 wherewhite (empty; material absent) isshown. Thisistheoptimal structural
form predicted by the optimisation algorithm for p at every point in the rectangular space.
Figure 6b shows an analytical solution given by A G M Michell in 1904 in a classic paper
entitled * On the Economy of Material in Frame Structures’ [4]. One can see the similaritiesin
topology between Figures 6a and 6b. But there are also differences. Figure 6b indicates that
there can be many criss-crossing spiraling beams, in fact, asmany asone can manufacturein as
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thin awidth as possible. The optimal form shownin Figure 6aisapractical solution that can be
realized.

Armed with a technique to compute the optimal structural form, we will now proceed to
examine optimality in the Maria Pia Bridge designed and built by Eiffel during 1875-1877.

Optimality of the Maria Pia Bridge

In 1875, the Royal Portuguese Railroad Company invited proposalsto build a bridge over the
river Douro between Lisbon and Porto. It entailed many challenges. The river was 20 m deep
and theriver bed had loose soil and the currentswere rapid. So, no pier could be constructed in
theriver. It meant that the central span had to be 160 m long, the longest at that time for anon-
suspension bridge. Eiffel’ scompany wasstill young at that time. Y et, among thefour proposals
submitted, Eiffel’ s company quoted the least. To be precise, Eiffel quoted 0.965 million francs
while the next closest bid was 1.41 million francs. The other bigger companies had quoted
nearly twiceand thrice of Eiffel’ squote. Amongthefour designssubmitted, Eiffel’ sdesign was
aso clearly the most beautiful. It was selected by the Portuguese government.

Eiffel got it built in less than two years. As shown in Figure 1 on p.842, it had an arch in the
middle that supported the railroad with piersthat supported it away fromtheriver banks. It had
atotal length of 352.75 m and a height of 62.40 m. When we examine the other three design
proposals [5], we see that Eiffel’s Bridge used the least amount of material. In order to
investigate this, we ran an optimisation program that optimally determines the geometric form
of astructure using the method described in the previous section.

InFigure 7a, we show the specifications of the problem in two dimensions eventhough abridge
isathree-dimensional structure. Wetraced the shape of theland available for fixing the bridge
on either side of the banks of the river on a photograph and took itssize as shownin Figure 7a.
The size wetook is not exactly the same aswhat Eiffel had considered but the proportions are
preserved. We considered uniform loading on the bridge throughout its span. We used
properties of steel for Young's modulus (210 GPa) and Poisson’s ratio (0.3). The available
spacewas divided into 6,764 quadrilateral elementsand adesign variable was assigned to each
of them. Thealgorithm determinesthe p valuefor them. The solution given by the optimisation
agorithmisshownin Figure 7b for 35% material constraint tofill the space bel ow the straight
railroad plate and up to the landmass on the banks. Itslikenessto Eiffel’ sdesign (Figure 3c) is
striking, someminor differencesnotwithstanding. The other three proposed designswere quite
different in their form. One can only wonder how Eiffel and his engineers thought of an
optimum form morethan acentury before amathematical method could be devel opedto predict
the optimal geometric formfor the stiffest structure with a given amount of material. The small
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Maria Pia bridge

Figure 7. The Maria Pia Bridge problem in two dimensions: (a) The specifications for load, space
available, and where the bridge structure could be fixed, (b) optimal geometric form given by the
algorithm, (c) the design submitted by Eiffel’'s young company (redrawn from [5]).

differenceinthe number, location, and shape of the pierscan be attributed to the different loads
and manufacturing considerations Eiffel might have taken into account. Above all, the design
of Eiffel company’s engineers Theophile Seyrig and Henry de Dion also preserved the beauty
of the landscape of the countryside with its elegant arch and mostly empty space inside and
under the bridge. We have already discussed the level-3 shape-hierarchy in this bridge.

Next, we consider the optimality of shape of the Eiffel Tower itself.
The Optimal Shape of the Eiffel Tower

In the United States of America, Clarke, Reeves and Co. had proposed to build a tower for
USA’sCentennial. Thetower wasto be made of wrought iron and wasto be 1000 ft (305 m) tall.
But it never happened because of lack of funds. Perhapsinspired by thisideaof building atower
that istwice astall asthetallest at that time, the Washington Monument in USA’ s capita city,
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Eiffel took up this task [6]. Two engineers of Eiffel and Co., Emile Nouguier and Maurice
Koechlin, werethinking of building atall tower for some years by then. They came up with an
ideafor a 300 m tall tower when they were discussing possible attractions for the Centennial
Exposition of Parisin 1889. It was in these minds that the 300-metre tower was envisioned.
They came up with adesign of agreat pylon with four lattice girders standing apart at its base
and gave it an architectural touch with the help of the company’s chief architect Stephen
Sauvestre. He gave the pylonitstower formwith the arches at the bottom, and aplatform at the
first level. Theyear was 1884, and still only atentativeidea, but agood oneto entice agreat and
daring builder like Gustave Eiffel. He had it patented in the same year.

Coincidentally or maybe because of the strong recommendations of Eiffel, the French govern-
ment organised a competition for the construction of a 300 metre tower in Champ de Marsin
1886. Eiffel and Co. won this competition among more than 100 submissions. The tower won
the competition for its optimality and many uses el aborated by Eiffel and Co. It wasto be made
of wrought iron that was known for its high strength to weight ratio. Its construction began by
January 1887 and was completed by March 31, 1889, two months ahead of schedulewith afew
weeks to spare before the Centennial Exposition began in Paris.

Earlier inthisarticle, wehad commented on the shape of free-standing structures—human-made
and those of Nature. Let us now discuss how the optimal shape was obtained by Eiffel’s
engineers. They were very familiar with the construction of piersin bridges wherein the wind
loading wasthe mgjor load onthe structure. Inthe case of the piersthey had to balanceit against
the load of thewind on the viaduct rather than on the pier itself, whichisnegligible. But in the
caseof thetower they hadtotakeonly theeffect of thewind onthe pier into account. Eiffel notes
that the elaborate truss structure would hardly be efficient and hence one has to do away with
the cross-beams (trellis elements) by shaping the four uprights linked with a few interspersed
horizontal beltsinstead of thetrellis bars[7].

In order to understand how they managed to removethe
trellis elements among the four vertical arches, let us
consider asimpletrussstructureshownin Figure 8. The
wind loading islumped at the vertices shown as P,, P,,
and P,. Let their resultant force be P, whose line of
action is shown in the figure. Members BE and CD are

Figure 8. A simple truss example to illustrate how cross-
beams (trellis elements) can be eliminated as per the
reasoning used by Eiffel’s engineers. (Redrawn from [7])
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inclined such that they intersect the line of action of the resultant at A. Let the reaction forces
at thesectionMN beR,, R,, and R,. Sincewe have astructure here, the net moment at any point
must be zero. So considering the moment about A, one can easily see that the moments due to
R, R;, and P, must be zero as these pass through the point A. So, all that iseft is the moment
dueto R,, which must be zero. Thisimpliesthat R, must be zero. Thereby one can do away with
thetrellis element EC. Thisway, it is possible to construct a tower that does not obstruct the

view behind it.

With the abovereasoning, Eiffel and Co. considered two worst cases of loading: (i) 300 kgf per
square metre against the height of the tower, and (ii) linearly varying intensity of 200 kgf per
square metre from the bottom to the 400 kgf per square metre at the summit. They had
graphically obtai ned the profile of thetower. In arecent paper entitled ‘ M odel equationsfor the
Eiffel Tower profile: historical perspective and new results' [8], Weidman and Pinelis devel-
oped anonlinear integro-differential equation modeled along thelines of Eiffel’ sdiscussionin
his proposal and proved that the skyline profile is a solution to the equation.

To illustrate the optimality of the shape of the Eiffel Tower, we ran a shape optimisation
program for maximizing the stiffness against the two loadings that were considered by Eiffel
and Co. Wemodel ed the entire structure as aconti nuum that has both the properties of abar and
abeam (aframe element asit is called in mechanics) and possessing square cross-section. We
used the material properties of steel. The optimal shape profiles we obtained are shown in
Figure 9.

Figure 9acorrespondsto alinearly varying wind load and self-weight and Figure 9bto a steady
wind load and self-weight. Asremarked by Eiffel and Co. in their proposal, the shape is more

(@) (b)

Figure 9. Optimal shapes
forthe skyline profile of the
Eiffel Tower: (a) for linear
variation of the wind load,
(b) for uniform wind load.
Both cases consider the
self-weight.
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or lessthe same for both the conditions. It should be remarked that Eiffel considered the worst
possi blewind conditionand designed theentirestructureaccording toit. Our shapeoptimisation
illustrates the optimality of the gross outer shape and not the inner structure that Eiffel had to
consider. Asnoted earlier, Eiffel Tower haslevel-3 shape-hierarchy andisindeed optimal inits
overall shape and its material usage to create that shape. By creating holes, the wind load was
reduced too.

Optimality and Aesthetics

Eiffel’ soptimal structureswere not limited to bridges and hisfamoustower. His company had
designed and built many buildings that include railway stations, schools, religious places of
worship, houses, and observatories (see Figure 10). In al of them, he paid attention to the way
materials were used. Most of his structures had the mark of shape-hierarchy and they all used
as small an amount of material as was needed. Perhaps that is why his company won many
competitive bids to build major structures. It is important to note that Eiffel’s company used
innovative techniques in building the structures. Most were completed within two years and
were alwaysin time or ahead of schedule and within the initially projected budget. Out of this
optimality, Eiffel also achieved beauty.

Eiffel’s Tower and hismany bridgeswere appreciated for their aesthetic value. In aperiod that
had mostly masonry structures, Eiffel exposed the ironwork whose el egant and optimal shapes
evoked aesthetic appeal. Of course, there were critics who found his structures, including the
Tower, ugly. Eiffel defended himself by saying that “the intention of a building should be
openly declared; the various materials should be used in a deliberate way; why should the

Figure 10. Observatory in Nice, France, designed by Charles Garnier, the architect, and its dome
designed by Gustave Eiffel. The right-side picture shows the inside view of the dome that could be
turned by hand, even by a child, because of a floating ring designed by Eiffel. Level-2 shape-
hierarchy is visible when we look at the semicircular arches used in the dome.

Photographs adapted from www.wikimedia.org.
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Figure 11. Pest Railway Station in Budapest, Hungary. Left: exterior, right: interior.
Adapted from www.dkimages.com.

industrial natureof a building bedisguised, eveninthemiddleof acity?” [5]. Thisdefencewas
aimed at the Budapest railway station that Eiffel’ scompany built between 1875-1877. Here, he
used masonry, iron, and glass to achieve a grandiose structure (see Figure 11) that showed the
interior through the glass-panel ed gable that had the ironwork exposed to the outside.

It is pertinent here to mention a comparison made between the Eiffel Tower and neo-
impressionistic paintings of Georges-Pierre Seurat (1859-1891), a French painter. Seurat
pioneered a technique of juxtaposing tiny colored dots which remain close to each other but
separate and yet evoke a sense of continuity and elegance when perceived by human eyes.
Seurat was influenced by the scientific principles of perception of color and achieved an
amalgamation of science, emotion, and beauty. Therefore, the analogy between Seurat’s
paintingsand the Eiffel Tower, and perhapsall hisstructures, isvery apt. Inthewords of an art-
historian, Meyer Schapiro [5], thisanalogy comes out most clearly: “ ...the constructions of the
(Eiffel’s) immense monument out of small exposed parts, each designed for its place, and
forming together out of thevisible crisscrossand multiplicity of elementsa singleairy whole of
striking simplicity and elegance of shape, was not unlike his own (Seurat’s) art with its
summation of innumerable tiny units into a large clear form which retained the immaterial
lightnessevidentinthesmaller parts...”. Eiffel’ sdesignscontinueto appeal tothe aesthetic eye
as much as to the engineer’s eye that also cares about optimal use of material and resources.

Closure

Optimality runsthrough most of Eiffel’ sworksthat included not just hisfamoustower but also
many bridges and buildings. The shapes of his structures, and more importantly, the internal
shape-hierarchy of hisstructuresremainshishallmark. By describing the shapehierarchy found
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in Nature's designs, we presented an argument that Eiffel’s structures too are optimal. To
further emphasi ze the point, we discussed the opti mality of two famous structuresof Eiffel. The
Maria Pia Bridge' s geometric form was nearly reproduced by an optimisation algorithm we
described briefly in thisarticle. We aso included the result of shape optimisation of avertical
structure to show the resemblance between Eiffel Tower’s skyline profile and the optimum
shape solution.

Optimal traitsof Eiffel werenot limitedto hisstructural designs. Hismanufacturing techniques,
assembly of bridges, site-planning and management were also optimal in their own right. For
instance, hefound it economical and efficient to serve subsidised lunch to construction workers
onthefirstlevel of the Tower rather than let them come down and then go up duringthe Tower’s
construction. His four-volume biography meticulously put together by himself projected his
accomplishments (sometimes at the expense of not giving due credit to his collaborators) can
aso be thought of as an optimal exercise in ensuring his preeminence for posterity. He had
unfulfilled dreams and a few failures too. His company could not build the Panama Canal for
which he had agrand design of aflowing staircase. The other aborted projectsincluded afully
submerged bridge across the English Channel, an observatory on Mont-Blanc, and the metro
system for the city of Paris. Eiffel did not lose heart in such failures; like atrue optimiser or an
optimist he moved on to other endeavours. He invented new uses for his tower in terms of
commercially rented space and, moreimportantly, for his scientific experiments on estimating
aerodynamic loads, meteorology, and radio communications. His mind, perhaps, always found
an optimal solution for the objective criterion no matter however severethe constraintsthat life
brought to him. His contributions made in the belle epoch (beautiful era) of France are long-
lasting. Hisbridgesand buildingsareeither historiclandmarksor arestill inuse acrosstheworld
in South America, China, Philippines, and Vietnam in addition to the continental Europe.
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As a tribute to our creator we made an optimal statue of him ..

RESONANCE | September 2009 vV 865





