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The notion of optimization is inherent in the design of a sequence of amino acid monomer
types in a long heteropolymer chain of a protein that should fold to a desired conforma-
tion. Building upon our previous work wherein continuous parametrization and deter-
ministic optimization approach were introduced for protein sequence design, in this pa-
per we present an alternative formulation that leads to a quadratic programming problem
in the first stage of a two-stage design procedure. The new quadratic formulation, which
uses the linear interpolation of the states of the monomers in Stage I could be solved to
identify the globally optimal sequence(s). Furthermore, the global minimum solution of
the quadratic programming problem gives a lower bound on the energy for a given
conformation in the sequence space. In practice, even a local optimization algorithm
often gives sequences with global minimum, as demonstrated in the examples considered
in this paper. The solutions of the first stage are then used to provide an appropriate
initial guess for the second stage, where a rescaled Gaussian probability distribution
function-based interpolation is used to refine the states to their original discrete states.
The performance of this method is demonstrated with HP (hydrophobic and polar) lattice
models of proteins. The results of this method are compared with the results of exhaustive
enumeration as well as our earlier method that uses a graph-spectral method in Stage I.
The computational efficiency of the new method is also demonstrated by designing HP
models of real proteins. The method outlined in this paper is applicable to very large
chains and can be extended to the case of multiple monomer
types. �DOI: 10.1115/1.1901705�
1 Introduction and Background
In recent years, engineering research techniques, especially

from kinematics and elastic mechanics viewpoints, have been ap-
plied to protein studies �e.g., �1–3��. In this paper we apply a
design optimization technique to protein design. Proteins are het-
eropolymer linear chains comprised of 20 different types of amino
acid molecules. Each amino acid molecule is composed of carbon
�C�, hydrogen �H�, nitrogen �N� and oxygen �O� atoms, and the
side chain molecule �R�, as shown in Fig. 1�a�. The atoms and the
side chain are connected by covalent bonds shown by thin solid
lines in the figure. The molecules are joined together with peptide
bonds �thick solid lines� between C and N atoms and are also
often referred to as residues. As indicated in Fig. 1�b�, the residues
can rotate relative to each other about the bonds CuN and
CuC�. Since the 20 different types of side chain molecules �R�
possess varied affinity to solvents and among themselves, the pro-
tein chain folds into a three-dimensional structure, called the con-
formation, such that the force equilibrium among the hydrophobic
and other forces is achieved �4�. The conformation is often repre-
sented by the backbone that joins the carbon and nitrogen atoms
with further detail given by the orientations of the side chain
molecules, which are called rotamer configurations.

It is known that the functionality of a protein that provides
mechanical support, enzymatic catalysis, regulation, signaling,
etc., is determined by its three-dimensional conformation. Further-
more, the folded conformation of a protein chain is determined by
its sequence of amino acid residues. Therefore, the protein design
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problem is equivalent to determining the amino acid sequence for
a desired conformation that has the intended functionality. In this
paper we treat protein sequence design as a quadratic program-
ming problem and solve it using deterministic optimization meth-
ods as opposed to stochastic and statistical approaches reported in
the literature.

The notion of optimization is inherent in the design of proteins
because the predominantly used criteria for protein folding relate
to a minimum energy or maximum energy gap. The energy of a
protein chain in a folded conformation is the sum of energetic
interactions acting between every pair of interacting neighboring
residues. These are modeled with varying degrees of complexity
from one extreme of considering atomistic details to the other
extreme of highly simplified experimental or empirical data. For
computational and design purposes, it is useful to have a simple
model of the energy potential defined among different types of
neighboring amino acid residues. An example of such a model for
the pairwise inter-residue interactions is the MJ �Miyazawa and
Jernigan� matrix of size 20�20, which is based on statistical
analysis of known proteins �5�. Every entry in this matrix gives
the level of energy between the corresponding pairs of types of
amino acid monomer molecules.

In order to understand the principles of protein folding, it is
useful to imagine a conformation space and a sequence space,
which need to be searched to design a protein. The conformation
space consists of all possible conformations �foldable states in
three dimensions� for a protein chain of a given number of resi-
dues. The sequence space, on the other hand, contains all possible
sequences for a chain of given length, i.e., the number of residues.
According to Anfinsen’s �6� thermodynamic hypothesis, a protein
chain stably folds to its preferred conformation if the energy of the

sequence is uniquely and globally the minimum among all its
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permissible conformations. Such a conformation is said to be the
native state for the sequence.

Designing a protein requires a search both in the sequence and
conformation space. Identifying the sequence, such that the de-
signed protein chain folds to a desired conformation, requires a
search in the conformation space that consists of an infinite num-
ber of conformations. In addition, the search of the conformation
space needs to be carried out for every sequence in the sequence
space to identify the sequences in the native state. A full search in
both the sequence and the conformation space is computationally
impractical. As a practical approach for a protein design, alterna-
tive approaches have been developed by many researchers to
make the problem computationally tractable �13,22�. The pre-
dominant approach is to limit the search to the sequence space
alone in order to identify subsets that satisfy certain criteria. A
number of design criteria have been proposed such as energy,
energy gap, the ratio of energy gap to the standard deviation of the
nonfolded state energies, and the free energy separation between
the target state and an unfolded ensemble �7,8�. In this paper, the
sequence space is searched to identify a sequence that has mini-
mum energy for the desired conformation among all sequences
satisfying an additional constraint on the composition. This should
be a useful component of the overall protein design problem.

The complexity of the sequence-design problem can easily be
grasped by noting that there are 20N sequences when there are N
residues in a chain. For N=100, which is the order of the size for
real proteins of medium size, the number of sequences is
1.27E130—an inconceivably large number that makes solution by
enumeration impossible and poses significant challenges for opti-
mization methods.

Many techniques have been developed for protein sequence de-
sign. They include deterministic and stochastic methods as re-
viewed briefly in �7�. It is worth noting that all these techniques
�9–13� approach it as a discrete problem with two exceptions: one
that uses statistical design methods �7,14� and the other that uses
mixed IP–LP �integer programming and linear programming� soft-
ware �15�. As an alternative, we presented a continuous modeling
of this problem �16� and reduced the problem size using a graph
spectral method �17� so that sequence�s� with minimum energy
could be found within minutes on a desktop computer using
gradient-based continuous optimization methods. In particular, we
showed that a minimum energy sequence for a 500-residue long
chain of two types of monomers �i.e., 2500�10150 possible se-
quences� could be found within 10 min on a single-processor
desktop computer. The global minimality of the solutions obtained
with this method was confirmed for the case of 27 residues by
exhaustive enumeration. However, since a local optimization al-
gorithm is used, global optimality is not always assured and is
dependent upon the given initial guess.

Fig. 1 Nomenclature of proteins. „a… Sche
ball and stick model showing the 3-D arran
In this paper, we focus on the estimation of a good initial guess

Journal of Mechanical Design
to our previous method by proposing and solving a new quadratic
programming �QP� problem in the first stage of a two-stage design
procedure. The global minimum solution of the QP problem can
be found by the deterministic global optimization method pre-
sented by Lo et al. �18–20� on the basis of the algorithms devel-
oped by Tuy �21�. However, in this paper, we use a local optimi-
zation method to solve the QP problem since it performs fairly
well in identifying a sequence with global minimum energy as
observed with enumerated sequences for small chains. Thus, the
new method consists of two stages: the QP problem is solved in
Stage I, and the sequence obtained in Stage I is refined by the
method proposed by Koh et al. �16� in Stage II. We compare the
results of the new method with our old method �16� to show the
improvement in the cases of large numbers of residues that are
impractical to verify by enumeration.

In order to have a computationally tractable problem whose
results can be verified independently by enumeration, simplified
representations of proteins, called HP lattice models are often con-
sidered. This is based on grouping the 20 amino acid types into
different categories based on their properties. The simplest, and
the most important form of such a classification is based on hy-
drophobicity, i.e., the inclination to hide from the water mol-
ecules. Hydrophobic amino acids have greasy side chains and they
like to stick together in order to minimize their contact with water,
whereas polar amino acids have more affinity to water �22�. This
leads to the so-called HP models of proteins where H groups are
hydrophobic amino acid types and P the polar �or hydrophilic�
types. This reduced representation enables, for simple cases, ex-
haustive enumeration and thus a way of confirming the validity of
a folding criterion, minimal property of a sequence, or a new
method of protein design.

To further simplify the problem with respect to conformation
space, the locations of the residues are fixed in a lattice. Figure 2

tic of three residues in a protein chain, „b…
ment.

Fig. 2 „a… H-P models of proteins „a… a 2-D protein model on an
irregular lattice, „b… a 3-D protein on a 3Ã3Ã3 regular lattice.
Black dots represent hydrophobic „H… residues and white dot
ma
ge
polar „P… residues.
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shows an HP model of 2-D and 3-D proteins. In these, the posi-
tions of amino acids in the lattice �irregular as in Fig. 2�a� or
regular as in Fig. 2�b�� are confined to particular locations in the
2-D or 3-D space. The allowed conformations are the self-
avoiding compact chains in which the chain cannot visit a single
site more than once �23�. The interacting pairs of residues in such
an arrangement are identified as those that are not nearest neigh-
bors in the chain, but are in space. It has been shown that HP
lattice models possess principal energetic and thermodynamic
properties of real proteins �24�. We use HP lattice models to vali-
date our design algorithm in this paper.

The remainder of the paper is organized as follows. The new
quadratic programming problem �QP� formulation is explained in
Sec. 2 along with a discussion of its principal features and some
results that demonstrate its computational efficiency. The QP
problem is the first of a two-stage design procedure. The new
combined method that uses the rescaled Gaussian distribution
function based continuous interpolation is presented in Sec. 3. The
results of the new method are presented and discussed in Sec. 4.
The paper ends with concluding remarks in Sec. 5.

2 Quadratic Formulation For Protein Sequence De-
sign

In HP modeling, for computational purposes, it is convenient to
denote the H type of residue by one and the P type by zero. This
1–0 state representation naturally leads to a discrete sequence
space. To make it amenable for continuous optimization methods,
we interpolate the states 0 and 1 linearly to render the sequence
design as a quadratic programming �QP� problem as shown below.
To see how the total energy is written for this case, consider two
interacting residue sites i and j, and two different types of mono-
mers H and P. We assign two variables, whose range is �0,1�, to
each site so that they represent the states of the H and P monomer
types and interpolate the states linearly between 0 and 1. As in
topology optimization of structures and compliant mechanisms
�25�, a value of 0 indicates that the corresponding monomer type
does not exist at that site and a value of 1 indicates that the site is
completely occupied by that monomer type. In order to see how
the energy can be continuously interpolated using this scheme, let
x1 and x2 denote the H states at the sites i and j, and x3 and x4 the
P states, respectively. Then the energy EQij

between them can be
written in continuous form as

EQij
= e�H,H�x1x2 + e�H,P�x1x4 + e�P,H�x3x2 + e�P,P�x3x4

�1�

where e�H ,H�=−2.3, e�H , P�=e�P ,H�=−1, e�P , P�=0 as per the
normalized values extracted from the eigenanalysis of the MJ ma-
trix for HP models �26�. Since x1 and x3 indicate the H and P
states of the same residue site i, a constraint is imposed to make
sure that each monomer site is occupied by one and only one total
monomer. That means the two variables quantifying the H and P
states sum to unity. The same is true for x2 and x4. Thus, we have
the following quadratic programming problem in four variables
with two linear constraints if we want to minimize EQij

by choos-
ing appropriate states for the two sites i and j.

Minimize EQij
�x� = e�H,H�x1x2 + e�H,P�x1x4 + e�P,H�x3x2

w.r.t. x = �x1 x2 x3 x4 �T

�2�
Subject to

x1 + x3 = 1

x2 + x4 = 1

0 � xk � 1 for k = 1,2,3,4

The advantage of the above formulation is that any number of

states �and hence many more types of monomers than the simplest
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two categories of H and P� can be introduced while retaining the
form of the quadratic programming problem. This is shown below
for the general case of m monomer types or states.

For any desired conformation for which the interacting pairs of
residues are known, an adjacency matrix A can be constructed so
that the entry Aij in A is equal to one if residue sites i and j
interact and zero otherwise. The matrix A is uniquely associated
with a conformation in the lattice models. By letting �i denote the
ith monomer type, the energy of a sequence in the given confor-
mation can be written as follows.

EQ =
1

2�	
i=1

N

	
j=1

N

Aij
	
k=1

m

	
l=1

m

e��k,�l�x�k−1�N+ix�l−1�N+j�� �3�

where e��k ,�l� are the energy values in the MJ-type interaction
matrix for m monomer types, and x�k−1�N+i is the state of type �k

monomer at site i. Thus, there will be Nm variables in the problem
with each set of m variables at N residue sites interpolating m
residue states linearly. There is a factor of half in Eq. �3� since the
interaction between every pair of interacting monomers is counted
twice in the summation. As there are m different types of mono-
mers, each �i indicates one of the elements in the set of amino
acid types. The MJ matrix gives the energy values for every pair
of amino acid types.

In some protein sequence design problems, monomer composi-
tion constraints may also be imposed. That is, if there should only
be N�k

residues of amino acid type �k in the chain. It can be
written as a linear constraint as follows.

	
i=1

N

x�k−1�N+i = N�k
�4�

The above constraint is similar to the material-resource constraint
in structural topology optimization �25�. By combining all of the
above, the general quadratic programming �QP� problem can now
be written as

Minimize EQ =
1

2
xTQx

w.r.t. x = �x1,x2,…,xNm�
�5�

Subject to

	
k=1

m

x�k−1�N+l = 1 for l = 1,2,…,N

	
l=1

N

x�k−1�N+l = N�k
fork = 1,2,…,m

0 � xj � 1 for j = 1,2,…,Nm

where Q is constructed as per Eq. �3�. The above optimization
problem can be expressed in the standard QP form as follows.

Minimize EQ =
1

2
xTQx

w.r.t. x = �x1,x2,…,xNm�
�6�

Subject to

Bx = c and 0 � xi � 1, i = 1,2,…,N

where the constraints, which are all linear, are expressed as a
single matrix equation. The above QP problem can be solved us-
ing efficient local gradient-based techniques available for this
class of problems �27�.

When the objective function is a polynomial, as EQ in Eq. �6�

is, the global minimum of the polynomial function can be identi-
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fied by a deterministic global optimization method �18–21�. Al-
though this global optimization method is applicable for QP in Eq.
�6�, its implementation is cumbersome. Furthermore, this method
becomes costly in both time and memory as N becomes large.
Therefore, we tested the QP formulation in this work using a
gradient-based local optimization method in order to examine its
performance with local optimization methods, which are very ef-
ficient in terms of using computational resources. Despite using a
local optimization method that may only identify a local mini-
mum, the solutions presented later in the paper show excellent
performance; the energy level of the sequences from QP corre-
sponds to the global minimum of EQ in most cases, as presented
next.

2.1 Results of the QP Formulation. Two different 4�4 lat-
tice conformations shown in Figs. 3�a� and 3�b� are considered to
show that the local method used to solve the QP problem can give
globally minimum results that are obtained by exhaustive enu-
meration. The small size of the lattice is considered because iden-
tifying the global minimum by exhaustive enumeration is not pos-
sible otherwise. The conformation A in Fig. 3�a� has 1022
sequences for which the energy in this conformation corresponds
to the unique global minimum in the conformation space. The
conformation with the largest number of sequences in the native
state is called the most designable conformation �28�. By exhaus-
tive enumeration, we found that the conformation in Fig. 3�a� is
the most designable 4�4 lattice conformation. The confirmation
B in Fig. 3�b�, on the other hand, has 459 sequences in the native
state.

For numerical optimization, we used the built-in optimization
routine FMINCON or QUADPROG which are in the Optimiza-
tion Toolbox of MATLAB software �29�. Since these are local opti-
mization methods, we tried to identify the best solution with at
least five random initial guesses. In order to examine the perfor-
mance of the quadratic energy model, we compared the minimum
energy EQ min obtained from the numerical solution of the QP with
the minimum energy Emin that is obtained with exhaustive enu-
meration in the discrete sequence space. Although EQ min of the

Fig. 3 Two 4Ã4 lattice conformations. „a… Conformation A:
number of sequences in native state=1022; „b… Conformation
B: Number of sequences in native state=459.

Table 1 Minimum energy of the conformations A and B of Fig
energy in discrete sequence space. EQ min is the minimum ener

NH Conformation A Conformation B

Emin EQmin
Emin EQmin1 −2 −2.0750 −2 −2.0750

2 −4.3 −4.3 −4.3 −4.3000
3 −6.6 −6.6000 −6.6 −6.6000
4 −8.6 −8.6750 −8.6 −8.6750
5 −10.9 −10.9000 −10.9 −10.9000
6 −12.2 −12.2000 −12.2 −12.2000
7 −13.5 −13.5000 −13.5 −13.5000
Journal of Mechanical Design
QP solution can possibly be greater than the Emin or the global
minimum of quadratic energy function EQg min, it turned out that,
for most of the cases, EQ min is lower than or equal to the mini-
mum energy Emin, as shown in Table 1. The results tabulated in
Table 1 are for different numbers of H monomers imposed as a
composition constraint. Table 1 shows that, in most of the cases,
EQmin

is lower than or equal to the minimum energy Emin in dis-
crete sequence space as shown in Table 1. This observation indi-
cates that the quadratic energy model solved with a local method
performs very well to identify the sequence with Emin, which is
the global energy minimum in the discrete sequence space.

The success of the local optimization method in finding the
global minimum of the QP problem can be attributed to the way
the discrete problem is modeled in the continuous space, and the
small size of the problem. The reason for EQ min sometimes being
lower than Emin is due to the fact that the minimizing sequence of
the QP problem may not necessarily have 0 or 1 states at all
residue sites; some may be in the intermediate state. But we need
to convert intermediate states to discrete states in order to obtain
the solution of the original discrete problem. This needs further
examination, which is discussed next.

2.2 Analysis of the QP Results. In order to analyze the result
of pushing the intermediate-state residue sites to 0 or 1, we denote
the sequence for EQmin

as x0, and define a set of sequences �xk� in
which the monomers with intermediate states �i.e., not 0 or 1� in
x0 are replaced with either 1 �H� or 0 �P� monomers while satis-
fying the constraints in Eqs. �5�:

�xk� = ���1,…,�mN�
�i = xi � x0 if xi � �0,1�;
�7�

�i � �0,1� if 0 � xi � 1,

satisfying 	i=1
m ��i−1�N+l=1 for l=1,… ,N; 	i=1

N ��j−1�N+i=N� j
for j

=1,… ,m. We now define the sequence space Xmin as the space
convexly spanned by x0 and the xk:

Xmin = x0 + 	
k=0

nx

wk�xk − x0� �8�

where wk�0, 	k=1
nx wk�1. Note that the definition of the xk guar-

antees that x0 is an interior point of Xmin. Due to the quadratic
nature of EQ, a local minimum solution x0 is also the global mini-
mum in Xmin. One can see this by looking at any line X�t� in Xmin
with X�0�=x0 which will lie in the feasible domain for all small t
�e.g. −�� t���. The energy function EQ�X�t��=XT�t�QX�t� is a
quadratic polynomial in t with a local minimum at t=0. It means
that the energy has a global minimum along X�t� at t=0. Since
every point in Xmin lies along such a line, x0 is a global energy
minimum in Xmin.

Next, note that there are six possible states of EQmin relative to
Emin and EQgmin:

EQmin = Emin = EQgmin �9a�

NH denotes the number of H monomers. Emin is the minimum
obtained from the local solution of the QP.

H Conformation A Conformation B

Emin EQmin
Emin EQmin8 −14.8 −14.8000 −14.8 −14.8000

9 −16.1 −16.1000 −16.1 −16.1000
10 −17.1 −17.1750 −17.1 −17.1750
11 −18.4 −18.4000 −18.4 −18.4000
12 −19.4 −19.4750 −19.4 −19.4750
13 −20.7 −20.7000 −20.7 −20.7000
14 −20.7 −20.7000 −20.7 −20.7000
. 3.
gy

N
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EQmin = Emin � EQgmin �9b�

EQmin � Emin � EQgmin �9c�

Emin � EQmin = EQgmin �9d�

Emin = EQmin � EQgmin �9e�

EQmin � Emin � EQgmin �9f�

Although there are six possible cases for EQmin,Emin, and EQgmin,
the example cases above show only two cases in which Emin
=EQmin and Emin�EQmin as can be seen in Table 1. Using the
notation introduced above, consider the case of EQmin

=EQ�xk� for
some values of k, and the case of EQmin

�EQ�xk� for other values
of k. If EQmin

=EQ�xk� for some xk say for k=1,… ,nq, and nq

�nx, then EQ is constant in the subspace affinely spanned by x0
and x1 through xnq

. In order to prove this, let us consider a line
X1�t� between the x1 and x0, X1�t�= �1− t�x0+ tx1, which lies in the
feasible domain for −�� t�1. Then the energy function
EQ�X1�t��=X1

TQX1 is a quadratic polynomial in t which can be
expressed as EQ�t�=at2+bt+c where a ,b ,c�R� �−	 ,	�. Since
x0 is a local minimum of EQ ,a must be greater than or equal to 0.
If a�0 then x0 is a unique global minimum over all values of t.
But, since EQ�x0�=E�x1�, we can conclude that a=0. Noting that
the only linear functions EQ�t�=bt+c that have a local minimum
are the constant functions, we can also conclude that EQ�t� is
constant on X1�t�. As the energy EQ along the line X1�t� between
x0 and x1 is constant, and is the same as the minimum value EQmin

,
the energy EQ on the lines connecting any points on X1�t� and x2
is also constant, and by the same argument as above, the minimum
value EQ is constant in the plane affinley spanned by x0 ,x1, and

Table 2 Energy minimizing sequences using exhaustive enum
shown in Fig. 3

Method Energy-mi

�i� Conform
Enumerated P P H H P P P P
QP solution
xH

0 0 1 1 0 0 0 0
xP

1 1 0 0 1 1 1 1
�ii� Conform

Enumerated

P P H P H P P H
P P H P P P H H
P P H P P P P H
P P H P P P P H

QP solution
xH

0 0 1 0 1
4

0 1
4

1

xP
1 1 0 1 3

4
1 3

4
0

�iii� Conform

Enumerated

P P H H P P P P
P P H H P P P P
P P H P P P P P
P P H H P P P P

QP solution
xH

0 0 1 1
2

0 0 0 0

xP
1 1 0 1

2
1 1 1 1

�iv� Conform

Enumerated

P P H P P P P P
P P H P P P P H
P P H P P P P H
P P H P P P P H

QP solution
xH

0 0 1 0 0 0 0 1

xP
1 1 0 1 1 1 1 0
x2. Therefore, continuing this process, the energy EQ in the space

732 / Vol. 127, JULY 2005
affinely spanned by x0 and the xk for k=1,… ,nq is constant.
If EQmin

�EQ�xk� for an xk, the sequence x0 corresponding to
EQmin

is the unique global energy minimum on the line connecting
x0 and xk in Xmin. This can also be understood by considering a
line Xk�t�= �1− t�x0+ txk between x0 and xk in Xmin. Since EQ is
quadratic in t, and x0 is a local minimum of EQ on Xk�t� ,EQ�t� is
convex on the lines Xk�t�. Therefore, EQmin

is the unique global
minimum on Xk�t�. In the complement of �Xk�t�� in Xmin, the
quadratic nature of EQ guarantees that EQ is greater than or equal
to EQmin

. In the case EQmin
�EQ�xk� for all xk ,EQ can still be the

same as EQmin
on a subspace that does not go through a discrete

state.
The above analysis shows that the minimum found by the local

optimization method using the continuous model will have a value
that is equal to or lower than the complete discrete sequences �i.e.,
xk� constructed with it. This is corroborated by the results shown
in Table 2.

Case �i� in Table 2 has only one energy minimum found by
enumeration. The QP solution found the same without any inter-
mediate densities. On the other hand, for case �ii�, there are four
energy-minimizing sequences and the state x0 of EQmin

is located
in the space spanned by the sequence states corresponding to
those four sequences. In this case, x0 has four residue sites �num-
bered 5, 7, 13, and 14� in the intermediate state of valve equal to
0.25. It means that anyone of these four sites can be made to be 1
�H� so as to satisfy the constraint NH=6 as shown in boldface
letters in the sequences in the table. In these two cases, Emin
=EQmin.

In cases �iii� and �iv� shown in Table 2, Emin�EQmin. In these
examples, the sequence x0 corresponding to EQmin

is a global en-
ergy minimum on Xmin and a unique global energy minimum on

tion and solution of the QP problem for conformations A and B

izing sequence Energy

n A, NH=5
P P H H P P P H −10.9

0 0 1 1 0 0 0 1 −10.9
1 1 0 0 1 1 1 0

n B, NH=6
H H P P P P P H −12.2
H H P P P P P H −12.2
H H P P P H P H −12.2
H H P P H P P H −12.2

1 1 0 0 1
4

1
4

0 1 −12.2
0 0 1 1 3

4
3
4

1 0

on A, NH=4
P P H P P P P H −8.6
P P H H P P P P −8.6
P P H H P P P H −8.6
P P P H P P P H −8.6

0 0 1
2

1 0 0 0 1 −8.75
1 1 1

2
0 1 1 1 0

n B, NH=4
H H P P P P P H

−8.6
H P P P P P P H
H H P P P P P P
P H P P P P P H

1
2

1 0 0 0 0 0 1
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xk. For the case of the conformations A and B in cases �iii� and
�iv�, the last two sequences in the table under the heading of
enumerated solution consist of the set of xk. Since there are two
sites in x0 with an intermediate density of 1

2 , two possibilities
clearly exist for the fourth residue site. But as can be seen in Table
2, there are also other possibilities with the same minimum en-
ergy. This is due to the inability of the local optimization algo-
rithm in identifying all minima.

In this simple case of 4�4 lattice, the analysis of QP solutions
could be carried out in the space constructed by their correspond-
ing discrete solutions, and the validity of the minimum could be
established. In large problems, when there are many residue sites
in an intermediate state, many combinations will once again arise
in identifying the discrete energy-minimizing sequences. As stated
earlier, this solution of the QP problem can then be used as an
initial guess for the Stage II problem to provide a sequence with
minimum energy in discrete states. This is described in the next
section.

3 Peak Function-Based Energy Modeling for State II
Optimization

In our earlier work, we have introduced a continuous modeling
of the 1–0 binary states using an interpolating function based on
rescaled Gaussian distribution functions for “material distribu-
tion” in the topology optimization of compliant mechanism design
�30,31� and for HP models of proteins in �16� as shown below.

Si�
� = exp�− �
i

�
�2� �10�

where 
 is the controlling variable for site i ,Si�
� the state of the
H monomer at site i, and �1−Si�
�� is the state of the P monomer
at site i. The symbol � denotes the parameter that governs the
sharpness of Si�
�. The variable 
 associated with a site continu-
ously interpolates its state between 0 and 1, as can be imagined
from the Gaussian probability distribution function, which is res-
caled such that its maximum is 1 rather than its integral and
termed as a peak function in �30�. For relatively large values of �,
the state is diffuse between 0 and 1 �i.e., between P and H� for a
range of values of 
. When � is decreased, the definition of the
two states becomes sharper, and eventually when �→0, the state
function in Eq. �10� approaches the discrete 0–1 modeling of the
state. It should also be noted that for any value of �, 
=0 pre-
cisely describes the H state, and a sufficiently large value of 



describes the P state. The state interpolation by this peak function
has several advantages, which justify using it to determine a spe-
cific sequence. First of all, there are no bounds for the domain of
the design space. The domain of independent variable 
 in this
model is defined to be −	�
�	 so that one does not have to be
concerned with the bounds on the variables. Second, the sharpness
of peak function can be varied by the tuning parameter � and
thereby controlling the selection of the states.

In Ref. �16�, we presented results that showed that HP models
of very large proteins �i.e., number of residues as large as 513�
could be handled efficiently. However, the obtained minimum is
not guaranteed to be a global minimum if the unbiased initial
guess to the optimization is taken to be the one in which all
residues are uniformly in the same intermediate state to satisfy a
composition constraint �i.e., the number of H monomers in the
chain is equal to NH� as is the common practice in structural
topology optimization. On the other hand, if the initial guess were
to be close to the global minimum, the method is most likely to
converge to it. As noted earlier, our previous method used a result
from a spectral graph theory based method �17�. It certainly im-
proved the method’s ability but did not have any guarantee of
being close to a global minimum. This study is focused on the
estimation of an initial guess located near the global minimum. In
an effort to estimate a good initial guess for the optimization

based on a peak function in Eq. �10�, we propose to solve the QP
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problem in the first stage, which often provides a sequence near
the global energy minimum. Furthermore, the new formulation is
amenable for deterministic global optimization. The initial guess
from QP improves the results for the optimization in the second
stage using a peak function-based energy model.

3.1 Energy Minimization in the Second Stage. In this paper,
the optimization problem in the second stage is limited to only
two monomer types, H and P. Its mathematical form in terms of
the Gaussian distribution function-based state interpolation is as
follows.

Minimize E =
1

2	
i=1

N

	
j=1
j�i

N

Aije�Si�
i�,Sj�
 j��

w.r.t. �
1,
2,…,
N� �11�

and subject to 	
i=1

N

Si − NH = 0

where e�Si ,Sj�=0.5�eHPSi�1−Sj�+eHP�1−Si�Sj +eHHSiSj� and Si

=e−�
i / ��2
. As noted earlier, the value of � is gradually reduced

during the iterative optimization process. A sufficiently small
value of � at the time of convergence ensures that all the mono-
mers are in either the H or P state. Thus, the minimum of the
discrete problem can usually be identified efficiently by solving
problems in Eq. �5� and Eq. �11� sequentially. The details of the
second-stage optimization to solve the problem in Eq. �11� are in
Ref. �16�. Results of the new two-stage procedure are presented
next.

4 Results and Discussion
The performance of the method and the validity of its results

are demonstrated in two different ways in this section. First, we
compare the sequence and its energy obtained from quadratic en-
ergy minimization with those obtained by sequence enumeration.
Of necessity, only small proteins are considered for this purpose
because larger sizes preclude verification by enumeration. Some
lattice models are also examined and their results are compared
with our previous method presented in �16�. Later, large real
protein-based models are considered and improvement over the
previous method is shown.

Figure 4�a� shows the ribbon representation of the folded con-
formation of Src tyrosine kinase transformation protein �PDB
code �31�, 1 SRL�. An HP model was constructed with this protein
with 55 H residues out of the total 64 residues that it has. Its
sequence space consists of 264�1.8E19 sequences. For the new
two-stage method, it is only an optimization problem in 64 vari-
ables and hence it is easily manageable. But for verification by
enumeration, it is impractical. However, for the assumed cases of
small or large numbers of H residues, the number of sequences
will be small. When there are NH of H residues out of N, the
number of sequences is given by

Number of sequences with NH residues =
N!

NH ! �N − NH�!
�12�

Thus, for very small or very large value of NH, enumeration is
possible. As shown with black dots in Fig. 4�b�, the minimum
energy sequences were found by exhaustive enumeration for NH
values of up to 6 and then from 51 to 55. As the circles in this
figure show, the new two-stage method �noted as 2ST in the leg-
end� is verified to find the sequences with globally minimum en-
ergy. The trend of the minimum energy in between the verified NH
compositions indicates that it is very likely that it is a global

minimum even for the cases in between.
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by
Unfortunately, it becomes increasingly prohibitive to verify it
by enumeration. For NH=7, there will be 6.2E8 sequences to be
enumerated and it gets larger for larger values of NH. Noting this
inability to find global minima for comparison, In Fig. 4�c�, the
improvement in the minimum energy found by the new method
when compared to the old method is shown. In the old method,
the first stage was a result of a graph spectral method. It is worth
noting that in some cases there is an improvement of over 20 units
in the minimum energy with the new method of this paper.

In Figs. 5�a� and 5�b�, the energy improvement over the old
method of �16� is shown for 3-D lattice models of sizes 4�4
�4 and 5�5�5, respectively. For the first-stage optimization,
the initial guess is given uniformly as 0.5 for all design variables.
For the second-stage optimization, the monomer states obtained
from the first-stage optimization are used as an initial guess and
the peak function tuning parameter � is gradually decreased from
0.5 until discrete sequences are obtained. The improvement in the
minimum energy is clear from Figs. 5�a� and 5�b�. There is only
one case in both where the new two-stage synthesis method gives
a result that is worse than the result of the earlier method. For
those cases, the energy level from the first-stage optimization was
probably near an inferior local minimum. By trying another initial
guess for the first-stage optimization, a sequence showing an im-
proved energy level could be obtained, and the final sequence at
the end of the second-stage optimization showed the same energy
level as the one obtained by the graph theory based method. If a
global minimization method were to be used, even such cases will
not arise. This is the strength of the QP and the new method.

Next, HP models of several real proteins from the Protein Data
Bank �PDB �32�� were considered. The number of H residues in
each case was determined by the usual classification based on the
type of amino acids. Figures 6–9 shows the results in which the
considered proteins, respectively, were Ubiquitin �PDB code:
1UBQ� with 76 residues out of which 71 were taken as of the H
type, Csk homologous kinase �1JWO� with 97 residues and 82 H
type, triosephosphate isomerase with sulfate with 250 residues,
and tobacco ringspot virus capsid protein with 500 residues. In all
cases, significant improvement in the minimum energy over the

Fig. 4 „a… Ribbon representation of 1SRL pro
method „circles… and exhaustive enumeration
„c… Improvement energy in the minima found

Fig. 5 The improvement in the energy beyond what the graph
spectral-based old method gave plotted against the number of

H residues for a „a… 4Ã4Ã4 lattice; „b… 5Ã5Ã5 lattice
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old method can be observed. However, each case has a few in-
stances where the improvement was not achieved.

Based on the above results, the strength and the weakness of the
new two-stage method can be summarized as follows. In the new
method, the QP problem in the first stage uses linear interpolation
of the residue states but with twice the number of variables in the
case of HP models. But this being a QP problem, a deterministic
global optimization method could be used. It is shown through
results in this paper that the QP problem, when solved even with
a local optimization method, often gives a globally minimum re-
sult. A weakness of the QP formulation is that its solution may
consist of the intermediate states between H and P. It means that

in. „b… Minimum energy as found by the new
ck dots… for a different number of H residues.

the new method over the previous method.

Fig. 6 „a… Ribbon representation of Ubiquitin „1UBQ…. „b… En-
ergy improvement over the old method.

Fig. 7 „a… Ribbon representation of Csk Homologous Kinase
„1JWO…. „b… Energy improvement over the old method.

Fig. 8 „a… Ribbon representation of triophosphate isomerase
complex with sulfate „5TIM…. „b… Energy improvement over the
te
„bla
old method.

Transactions of the ASME



once again a combinatorial problem arises. This is efficiently tack-
led by the peak-function-based state-interpolation method in the
second stage, which gives discrete states of H or P in the final
solution. The results presented in this paper show that the solution
of the QP method provides an excellent initial guess. The imple-
mentation of the methods of this paper was done in MATLAB �29�.
The minimum was found within a few ��10� minutes on a single-
processor desktop computer for each case considered in this paper.
Considering the extremely large number of sequences, this com-
putation time shows that the method is computationally very effi-
cient.

5 Conclusions
Protein sequence synthesis is a discrete design problem because

each residue in the heteropolymer chain of a protein may be any
one of the 20 types of amino acids. If there are N residues in a
chain, the number of possible sequences �=20N� is very large due
to combinatorial explosion. In this paper, we briefly reviewed our
earlier method that proposed continuous modeling of this discrete
problem. The earlier method consisted of two stages wherein the
first stage used a spectral graph theory-based method to reduce the
problem size and provide a good initial guess for the second stage.
In this paper, we presented a new two-stage method wherein a
quadratic programming �QP� problem was used in the first stage.
This QP problem is amenable to applying deterministic global
minimization algorithms. However, in this paper, we used local
optimization algorithms and showed that the global minimum can
still be obtained often as was verified using exhaustive enumera-
tion for small protein models. The examples with large proteins
show that the new method shows improvement over the earlier
method, and often provides sequences with global minimum en-
ergy.

The main achievement of the current work is the drastic reduc-
tion in the computational cost and the improvement in minimum
energy of the obtained solution in synthesizing the sequence of the
HP lattice model of a protein. More importantly, the QP formula-
tion can be solved to find the global minimum. Furthermore, the
QP problem is not limited to only two types of amino acid resi-
dues. Our ongoing work is aimed towards developing a scalable
deterministic global optimization method as well as extending the
second-stage optimization to multiple types of amino acid resi-
dues.
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