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Abstract. In this paper, we present a novel analytical formulation for the coupled partial 
differential equations governing electrostatically actuated constrained elastic structures of 
inhomogeneous material composition. We also present a computationally efficient numerical 
framework for solving the coupled equations over a reference domain with a fixed finite-
element mesh. This serves two purposes: (i) a series of problems with varying geometries and 
piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a 
single pre-processing step, (ii) topology optimization methods can be easily implemented by 
interpolating the material at each point in the reference domain from a void to a dielectric or a 
conductor. This is attained by considering the steady-state electrical current conduction 
equation with a ‘leaky capacitor’ model instead of the usual electrostatic equation. This 
formulation is amenable for both static and transient problems in the elastic domain coupled 
with the quasi-electrostatic electric field. The procedure is numerically implemented on the 
COMSOL Multiphysics® platform using the weak variational form of the governing equations. 
Examples have been presented to show the accuracy and versatility of the scheme. The 
accuracy of the scheme is validated for the special case of piece-wise homogeneous material in 
the limit of the leaky-capacitor model approaching the ideal case. 

1.  Background and Motivation 
Electrostatic force is one of the most important means of providing actuation in microsystems owing 
its popularity primarily to its favorable scaling at the micron scale and adaptability to most 
micromachining techniques. Its widespread use has spawned a variety of analytical and numerical 
methods for its analysis (e.g., [1]) and shape optimization (e.g., [2]). The comparative speeds and 
accuracies of various analysis algorithms come under close scrutiny in design situations involving 
multiple, iterative analysis steps such as those encountered in topology optimization or in the manual 
design of complex microsystem devices.  

To implement topology optimization for electrostatically actuated structures, a framework is 
required to allow any portion of a given region to be a conductor, dielectric, or void because every 
point can potentially be occupied by a conductor or a dielectric or by no material at all. Even though 
topology optimization-based synthesis methods have been reported for a variety of actuations in 
microsystems [3], such an attempt for electrostatically actuated microstructures is reported only 
recently [4]. The inability to smoothly interpolate the state of the material from a conductor to a 
dielectric or a void was perhaps a reason for this. In this paper, we introduce a new method for this 
purpose by modeling electrostatic domains as limiting cases of regions with spatially varying 
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conductivity. An additional advantage of the inhomogeneous conductivity model of the electrostatics 
problem is that it allows the flexibility to simulate arbitrary material composition within a given region 
of any shape and topology. Furthermore, the finite element mesh on the region can be fixed even when 
the internal geometries and interfaces change. This enables quick multiple runs with changed 
geometry, materials and other parameters, which expedites the re-design process without the trouble of 
repeated pre-processing. 

2.  New Analytical Formulation 
In traditional coupled electrostatic-elastic analysis, a given domain is partitioned into regions 
composed of conductors with dielectrics and/or voids among them. By applying the electrical 
boundary conditions, we solve the Laplace equation in the void regions. The resulting electrostatic 
potential field ( ) yields the distribution of surface charge density ( s ) on the conductors’ 
boundaries. This helps compute the electrostatic forces ( esf ) on the interfaces, which are then used to 
solve for the elastic displacements ( u ) in the structural domain. The displacements so computed are 
coupled back into the electrostatic domain (because the domains void  and struc  would have 
changed now) and the cycle is repeated until a self-consistent solution is found. This process is 
illustrated in figure 1, where 0  is the dielectric permittivity of free space, S  the elastic stress tensor 
and Y  the Young’s modulus tensor of the material that forms the structure. 

Figure 1. The traditional electrostatic-elastic analysis process 

The framework shown in figure 1 serves well for shape optimization and size (or parameter) 
optimization in which the regions of conductors and voids are known a priori although the boundary 
may be changing. However, in topology optimization the internal geometries and interfaces among 
conductors, dielectric and voids are not known; in fact, they get determined during the process of 
optimization. As is well known in this field, topology optimization is equivalent to optimal material 
distribution [3, 5]. When continuous optimization algorithms are used, the material distribution needs 
to be varied smoothly. This calls for “material interpolation” where continuous “intermediate” state is 
defined in between the material and void states [6]. In this paper, we define the properties of such a 
smoothened material state in terms of a spatially-varying material selection parameter. In the limit, this 
leads to distinct selection of conductors and voids when suitable upper and lower bounds are imposed 
on this parameter. Conductor and void regions are thus demarcated by spatially varying values of this 
parameter in an iterative optimization procedure. The physical basis for such an interpolation model is 
explained next. 

2.1.  The leaky capacitor model 
Consider a region of inhomogeneous conductivity with some arbitrary distribution of electric current 
flowing through it. Assuming the absence of sources and sinks of current, we consider the continuity 
equation for the volume density of free electric charge in the domain e , in terms of the electric 
current density vector J .
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Substitution of the microscopic form of the Ohm’s law (equation (2)) into equation (1), under 
steady-state conditions, gives the electric field distribution in a general conductive medium. 

J E  (2) 
0E  (3) 

Here, ( , , )x y z  is the spatially varying conductivity and E  is the electric field. In this model,  
( , , )x y z  varies between zero (the case of void) and infinity (the case of an ideal conductor). Under 

the same set of electrostatic boundary conditions, a part of the region that is in between the two 
extremes would partially conduct current and store electrostatic energy. In lumped modeling, it is 
equivalent to a resistor and a capacitor in parallel. This is known as the leaky capacitor model [7]. In 
the limit, this model approaches a pure conductor in the desired parts and void regions elsewhere thus 
resulting in idealized capacitive configurations. In a more general case, dielectric materials can also be 
modeled by interpolating the permittivity in addition to the conductivity. 

Similarly, in the mechanical problem, we represent the entire domain as a single material with 
spatially-varying elastic moduli (e.g., Young’s modulus) to distinguish the voids from the conductor 
and dielectric regions. These moduli are incorporated into the elastostatic1 governing equation  

esS F  (4) 
where S  is the stress tensor which is a product of constitutive elastic modulus tensor and the strain 
tensor. The body force term esF  that appears in equation (4) is the electrostatic force per unit volume. 
The expression for this force is derived from the general electrostatic stress tensor [8] and may be 
stated as follows: 

2 2
m

m

1 1
2 2es e E EF E  (5) 

where e  is the free electric charge density,  is the permittivity and m  is the mass-density of the 
material. The third term in equation (5) may be neglected in most practical situations since we are only 
concerned with the resultant forces on the domain [8]. Using the electrostatic Poisson equation (i.e., 

eE ), the microscopic form of Ohm’s law (equation (2)) and equation (3), we may 
alternatively rewrite the above force expression in the following form. 
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Equation (6) clearly shows how the electrostatic force develops in regions where there is a 
variation in either conductivity or permittivity. In the limit of the entire domain being demarcated into 
conducting and void regions, we see that the electrostatic force automatically gets confined to the 
interfaces where there is a discontinuity in the material properties. Thus, the body force shown in 
equation (4) approaches the familiar electrostatic boundary force at the interfaces. 

While the body force shown in equation (5) is readily implementable in a numerical scheme, an 
alternate procedure may be used when the entire domain is discretized into an array of cells. We would 
then assume that material properties remain constant inside each cell while being different from cell to 
cell. Then, the discontinuities arise only on the boundaries between adjacent cells. As a consequence, 
the electrostatic body force now transforms into an interface force that acts on the boundaries between 
cells [8]. The expression for this interface force per unit area is given as follows: 
                                                     
1 For elastodynamics, on the left side we need to add the inertia term mu , where m is the mass density of the 
material and u  is the displacement field. 

266



'
2n 2 1n 1 2 2 1 1

1
2es D D D E D EF E E n  (7) 

where n  is the outward normal to the surface, D the electric displacement field, and nD  its 
component normal to the surface, while the indices 1 and 2, respectively, refer to the quantities on the 
inner and outer sides of the surface. These procedures allow us to accurately compute the electrostatic 
force for any arbitrary material distribution.  

2.2.  Material interpolation 
We define spatially-varying parameters 1  and 2  to smoothly interpolate conductivity, permittivity 
and elastic moduli ( Y ) of the entire domain. In general, there are four possible types of materials: a 
pure conductor with the dielectric constant close to unity ( c ), a conductor with a  dielectric constant 
significantly larger than unity ( cd ), an insulating dielectric ( d ) and air/void. In surface 
micromachined structures metals, polysilicon, silicon nitride/oxide and air gap respectively correspond 
to the above possibilities. Here, 1  and 2  should be interpreted as material selection parameters that 
interpolate and help choose a material at every point in the design domain. Referring to Table 1, the 
four types of materials can be interpolated as follows. 

0 1 1 2 2

0 2 2 1 1

0 1 2 1 2 1 2 1 2

1 1
1 1
1 1 1 1

cd c

cd d

d c cdY Y Y Y Y
 (8) 

It should be noted that 1  and 2  are bounded between zero and one. When they assume values at 
these bounds, we get four combinations as seen in the table. It is also important to note that the 
interpolating formulae in equation (8) reduce to this discrete selection with 1  and 2  at their bounds. 
When their values are in between, equation (8) helps define functionally graded materials. As 
mentioned earlier, this interpolation is also useful in topology optimization. After discussing the 
implementation of the new formulation in equations (3), (4) and (6) with material interpolation in 
equation (8), a few examples are presented to show that piecewise homogeneous material distribution 
can also be done in this manner. That is, it offers a convenient framework for solving the usual 
problems wherein the regions of conductors, dielectrics and voids are clearly demarcated. 

Table 1. Materials and their properties relevant to the coupled electrostatic-elastic analysis 

Conductor: c Conductor with 
permittivity: cd

Insulating 
dielectric: d Air or void 

1 1 1 0 0 

2 0 1 1 0 

c cd 0 0 0 0
~ 0 cd d 0

Y cY cdY dY 0Y 0

3.  Implementation 
The numerical scheme is implemented in COMSOL Multiphysics® to solve the coupled electrostatic-
elastic problem in a fixed rectangular domain with 1  and 2   represented by spatially varying 
functions. We note that these functions take values between zero and one over the entire domain so as 
to represent different types of materials as explained in the previous section. For a functionally graded 
or otherwise heterogeneous distribution of material, the functions will be defined appropriately. In 
topology optimization, an optimization algorithm determines these functions to minimize an objective 
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function subject some constraints. The third use of these functions is illustrated in this paper to 
conveniently model usual homogeneous conductor/dielectric/void regions with the sharp interfaces 
within the domain. For this, we define 1  and 2  through appropriate combinations of step functions, 
thereby outlining sharp interfaces between adjacent material types. Apart from creating well-defined 
material regions, sharp transitions also help in localizing the body force so that a meaningful 
comparison may be made with standard electrostatic analysis methods (as in figure 1). 

However, the presence of spatial derivatives in electrostatic force density expression (see equation 
(6)) makes it necessary for the material properties to be differentiable with respect to the space 
dimensions. This is guaranteed by using smooth high-order sigmoid functions in place of 
discontinuous step functions in the expressions for 1  and 2 . We can thus ensure that the 
electrostatic force is resolved accurately by taking a finite element discretization that is small enough 
to interpolate these high-order sigmoid functions. Naturally, there exists a lower limit on the size of 
the finite element mesh due to limitations on the size of memory in a computer. This leads to a trade-
off between the accuracy of force computation and the precision in defining material interfaces. 
However, it is not difficult to find appropriate extent of smoothness for the step functions through 
some numerical experiments. For the examples presented in the next section, we choose sigmoid 
functions of the form 

max min
min

01 exp m x x
 (9) 

where min  and max  have values of zero and one respectively, while the value of m  is chosen to be 
40-80 times to that of  x .

4.  Results 
The accuracy of the material interpolation formulation was validated by solving a simple cantilever 
problem. The problem was solved using both the body force formulation of equation (6) (see figure 2) 
and the surface force formulation of equation (7) (see figure 3). The bottom edges of both the 
cantilever and the bottom plate were held fixed and a potential difference of 10 volts was applied 
across them. The deformation in the structure has been scaled up for ease of visualization. This 
solution compares well with the standard coupled electrostatic-elastic solver that was included in 
COMSOL Multiphysics® within an error of 0.1%. 

(a)     (b) 

Figure 2. Deformation of a simple cantilever due to electrostatic force. (a) Plot of 1  showing 
undeformed structure (b) Deformed structure with arrows indicating direction and magnitude of the 
electric field. Only mesh elements with 1  greater than 0.5 have been shown for clarity . 
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(a)     (b) 

Figure 3. Deformation of a simple cantilever due to the electrostatic force – surface force formulation. 
(a) Undeformed structure (b) Deformed structure with arrows indicating direction and magnitude of 
electric field. Only mesh elements with 1  greater than 0.5 have been shown for clarity. 

The material interpolation formulation was also used to model a micromachined polychromator-
like device [9], where a mirrored slender rectangular surface is to be translated vertically up and down 
using electrostatic force with minimal elastic deformation. We employed the innate symmetry in the 
problem to reduce the design domain by half, in order to improve computational accuracy. The 
symmetric right half of the undeformed structure is shown in figure 4(a). The feet of the moving 
structure are constrained and held at a potential difference of ten volts. The bottom electrode is 
constrained and electrically grounded. From figure 4(b), we see that only the vertical deflection of the 
mid-point of the fixed-fixed beam is transmitted to the flat mirrored surface at the top resulting in 
vertical motion without deformation. 

Another well-known device that we modeled was a relay switch (figure 5), where an actuation 
electrode is used to deflect a cantilever, thereby making and breaking electrical contact between a pair 
of contact electrodes. The actuation electrodes are insulated from the contact electrodes by silicon 
nitride. This example shows how dielectric materials may be included in the analysis.  

(a)    (b) 

Figure 4. Analysis of a polychromator device in which electrostatic force is used to move a mirrored 
surface vertically without deformation (a) Plot of 1  showing undeformed structure modeled using 
symmetry boundary conditions on the left edge (b) Complete deformed structure. Arrows indicate the 
direction and magnitude of electric field. Only mesh elements with 1  greater than 0.5 have been 
shown for clarity. 

269



Figure 5. Analysis of a relay switch in which electrostatic force is used to make and break electrical 
contact. Red indicates polysilicon and light blue indicates silicon nitride that is used to electrically 
insulate the actuation mechanism and the switch contacts. Arrows indicate direction and magnitude of 
electric field. Only mesh elements with 1  and 2  greater than 0.5 have been shown for clarity. 

5.  Closure 
The material interpolation model that we propose in this paper has a lot of flexibility in terms of 
performing electrostatic-elastic analysis for any arbitrary topology and material distribution, as is 
demonstrated in the three examples. Moreover, the leaky capacitor model that forms the physical basis 
for this formulation allows for accurate analysis not only in the limiting case of piecewise 
homogeneous material distributions, but also in all intermediate cases that represent functionally 
graded materials. This feature is also important in that it facilitates the implementation of optimal 
topology synthesis methods to optimize electrostatic actuator designs. The next step is to use this in 
topology optimization of surface-micromachined structures wherein polysilicon, nitride/oxide, and 
void regions can be smoothly varied to arrive at optimal topologies that obey the manufacturing 
constraints of a foundry process such as MUMPs [10]. This will be presented in our future 
publications. 
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