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NONLINEAR PROGRAMMING: A HISTORTICAL VIEW
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ABSTRACT

A historical survey of the origins of nonlinear programming is presented
with emphasis placed on necessary conditions for optimality. The mathematical
sources Tor the work of Karush, John, Kuhn, and Tucker are traced and compared.
Their results are illustrated by duality theorems for nonlinear programs that

antedate the modern development of the subject.

1. INTRODUCTION AND SUMMARY

The paper [1] +that gave the name to the subject of this symposium was
written almost exactly twenty five years ago. Thus, it may be appropriate to
take stock of where we are and how we got there. This historical survey has two
major objectives.

First, it will trace some of the influences, both mathematical and social,
that shaped the modern development of the subject. Some of the sources are
quite old and long predate the differentiation of nonlinear programming as a
separate area for research. Others are comparatively modern and culminate in

the period a quarter of a century ago when this differentiation took place.
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Secondly, in order to discuss these influences in a precise context, a few
key results will be stated and "proved". This will be done in an almost self-
contained manner in the spirit of the call for this symposium which announced
that the lectures would be pedagogical. The definitions and statements should
help to set the stage for some of the papers to follow by providing a formal
framework. In addition, these statements will allow the comparison of the
results of various mathematicians who made early contributions to nonlinear
programming. This will also give the pleasant opportunity to rewrite some
history and give W. Karush his proper place in the development.

In §2, a definition of a nonlinear program is given. It will be seen to be
a straightforward generalization of a linear program and those experienced in
this field will recognize that the definition is far too broad to admit very
much in the way of results. However, the immediate objective is the derivation
of necessary conditions for a local optimum in the differentiable case. For
this purpose, it will be seen that the definition includes situations in which
these conditions are well-known. On the other hand, it will be seen that the
definition of a nonlinear program hides several implieit traps which have an
important effect on the form of the correct necessary conditions.

in §3, an account is given of the duality of linear programming as moti-
vation for the generalization to follow. This duality, although it was discovered
and explored with surprise and delight in the early days of linear programming,
has ancient and honorable ancestors in pure and applied mathematics. Some of
these are explored to round out this section.

With the example of linear programming before us, the nonlinear program of
§2 is subjected to a natural linearization which yields a set of likely necessary
conditions for a local optimum in §4. Of course, these conditions do not hold
in full generality without a regularity condition (conventionally called the

constraint qualification). When it is invoked, the result is a theorem which

has been incorrectly attributed to Kuhn and Tucker. This section is completed
by a description of the background of the 1939 work of W. Karush [2] (which is

further amplified by an Appendix to this paper).
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NONLINEAR PROGRAMMING: A HISTORICAL VIEW

As will be seen in $L, the motivation for Karush's work was different from

the spirit of mathematical programming that prevailed at the end of the 1940's.

In §5, an attempt is made to reconstruct the influences on Kuhn and Tucker that

led them to Karush's result. These include such diverse sources as electrical
networks, game theory, and the classical theory of Lagrange multipliers.

Independent of Karush, and prior to Kuhn and Tucker, John had published a

- result [3] giving necessary conditions for the local optimum of a function

subject to inequalities. His motivation was different from either of the other
works and is deseribed in §6. A crucial example that is typical of the type of
geometric optimization problem that influenced John is Sylvester's Problem.
This is given a modern and concise treatment in §7.

The conclusion of the paper, contained in §8, is a sermon on the nature of
applied mathematics. It may be appropriate in that it was delivered at the first

sescicn of the symposium on a Sunday morning.
2. WHAT IS A NONLINEAR PROGRAM?

With malice aforethought and considerable historical hindsight, a nonlinear

program will be defined as a problem of the following form:

Nea

Maximize f(xl,...,xn) for "feasible" solutions to

gy (x50 X )=o) = =¥y

gm(xl,...,xn)—bm ol

for given functions f,gl,...,gm and real constants bl,...,bm. "Feasible"

means that each x, and y, 1is required to be nonnegative, zero, or free.

i’

The following examples show that this definition encompasses in a natural

way a host of important special cases.

(1) If we specify that all x; are free, all y; are zero, and all b,

are zero, then the problem reads:




4 HAROLD W. KUHN

Maximize f(xl,...,xn) subject to

gl{xl,...,xn) =0

gm(xl,...,xn) =10

This is the classical case of eguality constrained (nonlinear) optimization
treated first by Lagrange.

(2) 1f f(xl,...,xn) = clxlﬂ-A-4cnxn is linear, each

gi(x pumeix ) a, %t cta

1 . is linear, and all x, and yi are required

. X
in n dJd
to be nonnegative, then the problem reads (in customary vector-matrix notation):
Maximize c¢-x subject to Ax < b, x > 0.
This is the familiar case of a linear program in canonical form.
(3) If f and all of the g, are linear functions as in (2) and we
require all x, to be nonnegative and all ¥y to be zero, then the problem
J
reads:

Maximize c-x subject to Ax =b, x 0.

Iy

This is a linear program in standard form.
(4) Iet S be any set in E" and let gl(x) be the characteristic

function of & (that is, EI(X) =1 for xS and g1(x} = 0 otherwise).

Then, if m= 1, bl = 1, =zll xj are free, and ¥y = 0, +the problem reads:

Maximize f(x) subject to xe8.
Of course, the generality of this statement reveals in rather stark form that
the definition of a nonlinear program is too broad for any but the most
superficial results.

A final example will illustrate an important distinction which must be kept
in mind when a nonlinear program is studied. Example (4) shows that, for any
set S, we can present the problem: '"Maximize f(x) subject to x¢8," as a
nonlinear program in at least one way. The set & 1is called the set of

feasible solutions for the problem and will be the same however the problem is

presented. However the same problem may have several presentations and some may

be better behaved than others.
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NONLINEAR PROGRAMMING: A HISTORICAL VIEW

(5) Tet S be the triangle in the (xl,xp) plane with vertices (0,1/2),
(1,0), and (0,1). Consider the problem: Maximize f(xl,x2) subject to xeS.
This has two simple algebraic presentations that follow:

(a) Maximize f(xl,x ) subject to

2
xl+x2~} = =¥y —Xl—Er_+1 = =¥,
x >0, X, =0, ¥y >0, ¥, 20
(b) Maximize f(xl,xe} subject to

(xl+x2-l){xl+2x2-1] = =¥y

.. >0
¥ 2¥2 %

(IRYS

0, Y1 > 0.
Note that if f dis linear then (a) 1is a linear program in canonical form, and

so is as well-behaved as one could desire.
3. DUALITY IN LINEAR PROGRAMMING AND EEFORE

To motivate the derivation of the necessary conditions for optimality to be
given in the next section, let us place ourselves in the position of mathematical
programmers in the late 4o's. Von Neumann had given a formulation of the dual
for a linear program [U4] and Gale, Kuhn, and Tucker had provided rigorous
duality theorems and generalizations [5]. These are easily stated in a compact
form using the terminology of the preceding section.

Let us start with a linear program, that is, with f and all g5 linear.
As before, this may be written:

Maximize f£(x) = ¢-x for "feasible" solutions to
Ax-b = —y.
Here, as before, "feasible" is a requirement that each xj and Y3 be non-
negative, zero, or free. This specification induces a notion of "dual feasible"
for a related dual minimum problem on the same data. This problem reads:
Minimize h(v) =¥-b for "dual feasible® solutions to
vA-c = u.

In this dual linear program, each uj and v is required to be nonnegative,

zero, or free if the corresponding variable xi or ¥y has been required to be
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nonnegative, free, or zero, respectively, in the original (or primal) linear

program.

The pair of programs can be displayed conveniently by a diagram due to

A. W. Tucker.

X -1
—=
s A b ==y
-1 e 0 = f(max).
=1 =h{min)

The feasibility requirements are that paired variables (at the ends of the same
row or column) are either both nonnegative or one is zero and the other is free.
With this diagram available, it is obvious that for all solutions, feasible

or not,
n-f = u- xﬂﬁ_;ﬂr
while the definition of feasibility for the dual pair implies that
h-£ 2 0
for all feasible solutions. Henece, trivially, h-f = 0 is a sufficient
condition for the optimality of a pair of feasiblé solutions. Necessary
conditions are contained in the following theorem:

Theorem 3.1: If (¥X,¥) is an optimal feasible solution for the primal
program then there exists a feasible solution (u,v) for the dual program with
A-x+v-y = 0 (and hence an optimal feasible solution for the dual program).

As was said in the introduction, this duality theorem "was discovered and
explored with surprise and delight in the early days" of our‘subject- In
retrospect, it should have been obvious to all of us. Similar situations had
been recoghized much earlier, even in nonlinear programs. The phenomenon had
even been raised to the level of a method (that is, a trick that has worked more
than once) by Courant and Hilbert [6] in the following passage (slightly amended
and with underlining added):

"The Lagrange multiplier method Jleads to several transformations which are
important both theoretically and practically.

By means of these transformations new problems eguivalent toagiven problem
can be so formulated that stationary conditions occur similtaneously in equivalent-
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NONLINEAR PROGRAMMING: A HISTORICAL VIEW 7

problems. In this way we are led to transformations of the problems which are
important because of their symmetric character. Moreover, for a given maximum
problem with maximum M, we shall often be able to find an equivalent minimum
problem with the same value M as minimum; this is a useful tool for bounding
M from above and below."

e

It is a scholarly challenge to discover the:¥§i€£‘hﬁéﬁ ence of the elements
of such duality in the mathematical literature. These elements are:
(2) A pair of optimization problems, one a maximum problem with chjective

Tunction f and the other a minimum problem with objective function h, based

on the same data;
(b) For feasible solutions to the pair of problems, always h > f;

< i

1}

(e) MNecessary and sufficient conditions for optimality are h

SBurely one of the first situations in which this pattern was recognized
originated in the problem posed by Fermat early in the 1Tth century: Given
three points in the plane, find a fourth point such that the sumof its distances
to the three given points is a minimum. Previously, on several occasions ([7],

(8], and [9]), I have incorrectly attributed the dual problem to E. Fasbender

[10], writing in 1846. Further search has led to earlier sources. In a

remarkable journal, not much read today, The Ladies Diary or Woman's Almanack
(1755), the following problem is posed by a Mr. Tho. Moss (p. 47): "In the
three Sides of an equiangular Field stand three Trees, at the Distances of 10,
12, and 16 Chains from one ancther: To find the Content of the Field, it being
the greatest the Data will admit of?" While there seems to have been no explicit
recognition of the connection with Fermat's Problem in the Ladies Diary, the

observation was not long in coming. In the Annales de Mathématigues Pures et

Appliquées, edited by J. D. Gergonne, vol. I (1810—11), we find the following
problem posed on p. 38L: "Given any triangle, circumscribe the iérgest possible
equilateral triangle about if.; In the solutions proposed by Rochat, Vectern,
Fauguier, and Pilatte in vol. II (1811-12), pp. 88-93, the observation is made:
"Thus the largest equilateral triangle circumscribing a given triangle has sides
perpendicular to the lines joining the vertices of the given triangle to the
point such that the sum of the distances to these vertices is a minimum. (p. 91).

One can conclude that the altitude of the largest equilateral triangle that can
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be ciréumscrigéd about a gi;en triangle is equal to the sum of distances from
the vertices of the given:tfgéngle to the point at which the sum of dlqtances is

(p- 92)". The eredit for recognizing this duality, which has all of

the elements listed above, appears to be duc‘toV%éﬁén, professor of mathématiques
speciales at the Lycée de Nismes. Until further evidence is discovered, this

mist stand as the first instance of duality in nonlinear programming!
4. THE KARUSH CONDITIONS

The generalization of Theorem 3.1 will be derived for a nonlinear program

in canonical form (compare Example 2 of §2):
Maximize f(x) for feasible solutions of
g(x)-b = -y
where feasible means all XJ and vy are nonnegative. (Here we have used
g(x) as a natural notation for the column vector of values (gl(K),...,gm(x}).)
(;,?} to be locally optimal. Therefore, it is natural to linearize by
differentiating to yield a linear program:
Maximize df = £'(x)dx for feasible solutions of

g'(x)dx = -dy.
(Here, we have further restricted the nonlinear program to have differentiable
f and g.. Furthermore, we have used £1(x) and g'(x) as the customary
notations for the gradient of f and the Jacobian of g, respectively,
evaluated at E.}

Some care must be taken with the specification of feasibility in this
linear program. Intuitively, we are testing directions of change (dx,dy) from
a feasible solution (X,y) and we want the resulting position (x+dx,y+dy) to
be feasible (or feasible in some limiting sense). This leads naturally to the
following specification of feasibility for the linearized problem:

The variable dxj (dyi) is nonnegative if EJ =0 (§i = 0); otherwise

dx. and dyi are free.
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NONLINEAR PROGRAMMING: A HISTORICAL VIEW 9

The fact that the linearized problem is a linear program can be presented

as the following diagram (which includes the variables for the dual linear

program) :
ax -1
s g'(x) 0 =-dy
1| (@ 0 = df(max)
=u =0(min)

The specification of feasible (dx,dy) given above induces the following
specification of feasible (u,v):
The variable U, {vi) is nonnegative if Ej =0 (y.= 0); otherwise
u., and V. are zero.
J =
Noting the fact that (x,y) is feasible and hence nonnegative, the specification

of feasible (u,v) can be rephrased as nonnegativity and orthogonality to

(x,¥):

The variables (u,v) are feasible if and only if they are nonnegative and
u-xtv-y = 0.

Theorem b.1: Suppose df < O for all feasible (dx,dy) for the linearized
nonlinear program in canonical form at a feasible (x,¥). Then there exist
(w,v) > 0 such that

vg'(x)-r'(x) = 1
u-xtv-y = 0.

Proof: With the hypothesis of the theorem, the primal linear program has
the optimal solution (dx,dy) = (0,0). Hence, by Theorem 3.1, there exists a
feasible solution (u,v) for the dual program. The conditions of the theorem
combine the linear equations from the diagram and the characterization of
feasibility given above. E

To complete the derivation of the necessary conditions, we need to introduce
assumptions that insure that the linearized problem correctly represents the
possibilities for variation near (X,¥). Since the work of Kuhn and Tucker,

these assumptions have been called constraint qualifications.

fi
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Definition %.1: A nonlinear program satisfies the_?oﬁgifagﬁt ﬁﬁglificatioﬁ
(CQ) at a feasible solution (X,y) if for every feasible (dx,dy) for the
linearized problem there exists a sequence (xk,yk) of feasible soluticns and a
sequence Ak of nonnegative numbers such that

lim xk =x and 1lim Rk(xk—g) = dx.
k — o K=o

Theorem 4.2: Suppose a nonlinear program satisfies the CQ at a feasible
solution (X,¥) at which f achieves a local maximum. Then df < 0 for all
feasible solutions (dx,dy) for the linearized problem.

Proof: By the differentiability of £,

£(2)-£(F) = fv(;}(xk-z)+ek|xk-;<‘|

where lim € = 0. Since (¥,¥) is a local maximum,

k== K X
0> £ (x -x)+E A |x -x|
= K kk

for k large enough. Taking limits

0> f'(x)ax+( lim € )|dx| = daf. 0

k—w
These two theorems are combined to yield the necessary conditions that are

sought.

Theorem 4.3: Suppose a nonlinear program in canonical form satisfies the

€Q at a feasible solution (x%,y) at which f achieves a local maximum. Then

there exist (u,v) > 0 such that
ve'(x)-£' (%) = u
n-xX+v-y = 0.
The result just stated is customarily called the Kuhn-Tucker conditions.
The following quotation from Takayama [11] gives a more accurate account of the

history of these conditions:

"Linear programming arcused interest in constraints in the form of
inequalities and in the theory of linear inequalities and convex sets. The
Kuhn-Tucker study appeared in the middle of this interest with a full
recognition of such developments. However, the theory of nonlinear programming
when the constraints are all in the form of equalities has been known for a
long time -- in faet|, since Euler and Lagrange. The inequality constraints were
treated in a fairly satisfactory manner already in 1939 by Karush. Karush's
work is apparently under the influence of a similar work in the calculus of

variations by Valentine. Unfortunately, Karush's work has been largely ignored."
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NONIINEAR PROGRAMMING: A HISTORICAL VIEW 11

Although known to a number of people, especially mathematicians with a

connection with the Chicago school of the calculus of variations, it is certainly

true that Karush's work has been ignored. A diligent search of the literature

has brought forth citations in [12], [13], [14], and [15] to add to Takayama's

1,

book referenced above. Of course, one reason is that  work has not been

‘published; to allow the reader to see for himself that Karush was indeed the

first to prove Theorem 4.3, the Appendix to this paper provides excerpts from
the original work. Precisely, THEOREM 3:2 is equivalent to Theorem Iy, 3.

Karush's work was done as a master’s thesis at the University of Chicago
under L. M. Graves, who also proposed the problem. It was written in the final
years of the very influential school of classical caleculus of variations that
had florished at Chicago. One may suppose that the problem was'§§t as a finite-
dimensional version of research then proceeding on the calculus of variations
with inequality side conditions [167. G. A. Bliss was chairman of the department
and M. R. Hestenes was a young member of the faculty; both of these men influenced
Karush. (It is amusing to note that this group also anticipated the work in
optimal control theory, popularized under the name of the "Pontryagin" maximum
principle. For d;tails, see [17].) As a struggling graduate student meeting
requirements for going on to his Ph.D., the thought of publication never occurred
to Karush. Also, at that time, no one anticipated the future interest in these
problenms and their potential practical application. We shall return to this
question in the last section of this paper.

The constraint qualification employed by Karush is identical to that used
by Kuhn and Tucker and hence is slightly less general than Definition 4.1,
3§§¢%s@1¥§:h9mrequired that there exist arcs of feasible solutions issuing from

ngert to every (dx,dy). ' The need for some such regularity condition

was familiar from the equality constrained case. As the proof of Theorem 4.3
given above shows, the inequality constrained case requires the equality of a
cone generated by directions that are feasible from (x,y) and the cone of
feasible directions (dx,dy) from (X,y). Since the latter cone depends on the

nature of g(x), two problems with the same objective function and the same
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= e T

feasible set but specified in two differentwaysmaybehavedifferently. Example 5

I
% at the end of §2 illustrates this phenomenon in a striking way. If f(xl,xg) =%y

i then the problem as Tormilated in (a) is a linear program with the unique optimal

solution §1 =2y §2 =0, ?1_= 0. However, it is easily verified that, as

i formulated in (b), the "same" problem does not satisfy the constraint qualifi-

e

cation at this optimal solution and the conditions of Theorem 4.3 ecannot be

satisfied.

T 1 S

A full discussion of constraint qualifications and their historical ante-

i E cedents would take us too far afield. However it is appropriate to cite at this
il !

% 1 point another early and important but unpublished contribution to this area.

: | This is the work of Morton Slater [18], issued as a Cowles Commission Discussion
;} % Paper in November, 1950, and often referenced since then. Slater's main result

E ; is an elegant regularity condition that implies saddlepoint necessary conditions
% % for nonlinear prograiis without differentiability of f and g. We shall return
;E | to this in the next section.

5, THE KUHN-TUCKER PAPER

P

T
b3
i

The background of the work of Karush was so different from that of Kuhn and
E Tucker that one mist marvel that the same theorem regulted. From the mid 30's,
Tucker had sustained an interest in the duality between covariant and contra-
! variant that arises in the temsor caleulus and in the duality between homology
and cohomology that arises in combinatorial topology. He was also aware of the
; . pre-topology appearance of such phenomena in the deveropment of the theory of
electrical networks. However, this intellectual awareness might have lain fallow
except for a happy historical accident.-‘Inﬁt@é?ﬁay.oﬁyigﬁﬁ, @. B. Dantzig

vigited John von Neumann in Princeton to discuss potential connections between

the then very new subject of;linsar'programming'aﬁd'the'ﬁﬁgbfy of games. Tucker

B &

happened to give Dantzig a 1ift to the train station for his return trip to

Washington. On the way, Dantzig gave a five minute exposition of what linear

programming was, using the Transportation Problcnlasazsimpleillustrativeexample.
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This sounded like Kirkhoff's Laws to Tucker and he made this observation during
the short ride, but thought 1little about it until later. Dantzig's visit to
Princeton resulted in the initiation of a research project which had as its
original object the study of the relations between linear programs and matrix
games. (Staffed in the summer of 1948 by David Gale and Kuhn, graduate students
at Princeton, with Tucker as principal investigator, this project continued in
Qarious forms under the genercus sponsorship of the Qffice of Naval Research
until 1972.) Stimlated by a note circulated privately by von Neuman [4], the
duality theorem for linear programming (Theorem 3.1 above) was proved [5] and
various connections were established between the solutions of matrix games and
linear programs. As an example, in the summer of 1949, Kuhn produced a one-page
working note expressing the duality of linear programming as a saddlepoint
property of the Lagrangian expression:

L(x,v) = c-x+v(b-Ax)
defined for x > 0, v> 0. Thus Tormulated, the optimization problems involved
(maximize in x and minimize in v) yielded familiar necessary conditions with
only minor modifications to take account of the boundaries at 0. Of course,
this expression generalizes naturally to

L(x,v) = £(x)-v-g(x)
in the nonlinear case and this saddlepoint problem was later chosen as the
starting point for the exposition of the Kuhn-Tucker analysis.

On leave at Stanford in the fall of 1949, Tucker had a chance to return to
question: What was the relation between linear programming and the Kirkhoff-
Maxwell treatment of electrical networks? It was at this point that he recognized
the parallel between Maxwell's potentials and Lagrange multipliers and identified
the underlying optimization problem of minimizing heat loss (see [19]). Tucker
then wrote Gale and Kuhn, inviting them to do a sequel to [5] generalizing the
duality of linear programs to guadratic programs. Gale declined, Kuhn accepted
and the paper developed by correspondence between Stanford and Princeton. As it
was written, the emphasis shifted from the quadratic case to the general nonlinear

case and to properties of convexity that imply that the necessary conditions for
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an optimum are also sufficient. In the final version, the quadratic programming
case that figured so prominently in Tucker's research appears beside the duality
of linear programming as an instance of the application of the general theory.
A preliminary version (without the constraint qualification} was presented by
Tucker at a seminar at the RAND Corporation in May 1950. A counterexample
provided by C. B. Tompkins led to a hasty revision to correct this oversight.
Finally, this work might have appeared in the published literature at a
much later date were it not for a fortuitous invitation from J. Neymann to
present an invited paper at the Second Berkeley Symposium on Probability and
Statistics in the summer of 1950.

The paper [1] formulates necessary and sufficient conditions for a saddle-
point of any differentiable funetion o(x,v) with nonnegative arguments, that
is, for a pair (X,v) > O such that

@lx,v) < o(x,v) < p(x,v) for all x>0, v 2 0.

Tt then applies them, through the Lagrangian L(x,v) = f(x)-v-g(x) introduced
above, to the canonical nonlipear progran treated in §4 of this paper. The
equivalence between the problems, subject to the constraint gqualification, is
shown to hold when f and all gy are concave functions. It is noted, but not
proved in the paper, that the equivalence still holds when the assumption of
differentiability is dropped. Of course, for this to be true, the constraint
gualification must be changed since both Karush's gqualification and Definition L.1
use derivatives. As noted above, Slater's regularity condition [18] is an
elegant way of doing this. It merely requires the existence of an % >0 such
that g(%) < 0, and makes possible a complete statement without differentiability.

Of course, for most applications, the conditions of the differentiable case

(Theorem 4.3) are used.
6. THE JOHN CONDITIONS

To establish the relation of the paper of F. John [3] to the work discussed

earlier, we shall paraphrase Takayama again [11]: e
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"Next to Karush, but still prior to Kuhn and Tucker, Fritz John considered
the nonlinear programming problem with inequality constraints. He assumed no
qualification except that all functions are continuously differentiable. Here
the Lagrangian expression looks like vf(x)-v-g(x) instead of f(x)-v-g(x)
and vy can be zero in the first order conditions. The Karush-Kuhn-Tucker
constraint qualification amounts to providing a condition which guarantees
Vg >0 (that is, a normality condition)."

This expresses the situation quite accurately for our purposes, except to

" yecord that Karush also considered nonlinear programs without a constraint

qualification and proved the same first-order conditions. Karush's proof is a
direct application of a result of Bliss [20] for the eguality constrained case,
combined with a trick used earlier by Valentine [16] te convert inequalities into
equations by introducing squared slack variables. For the equality constrained
case, the result also appears in Carathéodory [21] as Theorem 2, p. 177.
Questions of precedence aside, what led Fritz John to consider this problem?
Marvelously, his motives were quite different from those we have met previously.
The main impulse came from trying to prove the theorenm (which forms the main
application in [3]) that asserts that:tﬁ?-bbundary-of a compact convex set §
in R. 1lies bebween two homothetic ellipsoids of ration S.no and that the
outer ellipsoid can be taken to be the ellipsoid of least volume containing S.
The case n = 2 had been settled by F. Behrend [22] with whom John had become
acquainted in 1934 in Cambridge, England. A student of John's, 0. B. Ader,
dealt with the case n = 3 in 1938 [23]. By that time, John had become deeply
interested in convex sets and in the inequalities connected with them. Stimulation
came also from the work of Dines and Stokes, in which the duality that pervades
systems of linear equations and inequalities appears prominently. Ader's proof
strongly suggested that duality was the proper tool for this geometrical problem
in the n-dimensional case, and John was able to use these ideas to write up the
problem for general n. The resulting paper was rejected by the Duke Mathematics
Journal and so very néarly joined the ranks of unpublished classies in our
subject. IHowevér, this rejection only gave more time to explore the implications
of the technique used to derive necessary conditions for the minimum of a
quantity (here the volume of an ellipsoid) subject to inequalities as side

conditions.
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1t is poetic justice that Fritz John was aided in solving this problem by a

heuristic principle often stressed by Richard Courant that?ﬁﬁﬁﬁ 'iﬁﬁ?n§i5 b
p:ﬁblé@ééggr_' f inequality is g.consﬁggint,.ﬁésolﬁtion-aiﬁays behaﬁﬁgﬁagﬁi¥'£ﬁe S
inequality were ‘gbsent, or 'Safg'_isﬂes-_sﬁ-rictf_ equality. It was the occasion of (1)
Courant's 60th birthday in 1948 that gave John the opportunity-to complete and S
publish the paper [31- siigl

In summary, it was not the caleculus of variations, programming,optimization, (2)
or control theory that motiviated Fritz John but ratner the direct desire to
£ind a method that would help to prove inequalities as they occur in geometry.
Tn the next section, W€ shall treat such a problem,llsedtm'John as an illustrative W i
example, from our present point of view. ~ _—

(3)
T SYLVESTER'S PROBLEM

In 1857, J. J. Sylvester published a one sentence note [2b]: e Thus
yequired to find the least circle which shall contain a given set of points in -
the plane.” The generalization to an arbitrary bounded set in R was used by fo1
John in [3] as an 11lustration of the application of his necessary conditions.
Our purposes in this section are similar to his; we have the advantage of the
cumulative research in nonlinear programming over the last quarter century.
Although the problem has an extensive literature (see [25] for some of its
history), it is only recently that it has been recognized as a quadratic
program by Elzinga and Hearn [26]. More precisely, Sylvester's problem can be
formulated as a hybrid program (that is, a linear program with a sum of squares -
added to the objective function [27]). As such, it has a natural duzal which is
also & hybrid program. This fact can be discovered very naturally by consfmcting Thi
a dual using the theory of conjugate functions [28], then recognizing that the (h]
dnal is a hybrid program. Therefore, Sylvester's Problem must be a hybrid
program in disguise. The treatment given below reverses this process in (5

traditional mathematical style.

VT
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let a -say be n given points in R'. Then Sylvester's Problem in

12"
m-space asks for xeR' minimizing maxj|x—aj[, where ]x—aj| denotes the
Fuclidean distance from x to aj' This is clearly equivalent to:
——_— 2 m

(1) Minimize maxj(x—aj) /e for xeR ,

2 5
where (x—aj}2 = |x—aji and the factor of 1/2 has been inserted for
gsimplification later. Problem (1) is equivalent, in turn, to:

2
(2) Minimize wv+x“/2 subject to
2
VX /2 > (x~aj)2/2

for veR, xR, and Jj = l,...,0.
We may rewrite (2), introducing slack variables yj and explicit coordinates
for a. and x, as:

J
- I 2 -

(3) Minimize V+ijif2 subject to

y. = V+I_ X4, ~£.a?./2 >0

3 I e s e G oy =

for veR, (xi)eRm, and Jo= lyseeyne

Thus Sylvester's problem is equivalent to a hybrid program in the sense of

Parsons and Tucker [27]. This program is displayed with its dual in the

following schema:

Al E“ -1
v | I 1 1|=0
B - I
|
Kl all aln i 0 = Zl
*n ml ?ﬁEL__i Q=2
2 2
-1 ulX2 an/E 0|=r¢f
=¥ E:yn S

This schema displays two programs (the first of which is exactly (3)):
(%) Minimize H = h+x2/2 for
h=v, ¥.= VL x.a.‘—ag/e >0, all j.
S - R T &l LA

2
f-z°/2 for

(5) ' Maximize F

s z_%,a?/z, A= Ly Bo=Ba N, .
J33 Jd i J7id 3 J
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Following the results of Parsons and Tucker, these programs are coupled by a

duality equation, an jdentity that is valid for all V, ¥,

2
WF = By AH(x-2)/2
753 ( /

¥ for feasible solutions of (L) and (5) and

ible solutions if, and only if:

y.Ah, =0 for all

nt for feasible solutions to0 be optimal.

(7) are necessary and sufficie

The sufficiency is obvious; the necessity is a direct applicationtxfThcorem L. 3.

gince the consbraints are linear inequalities the constraint qualification is

trivially satisfied. We have proved (dropping the factor of 1/2):

Theorem T-1:

2 2.
ax[T . h.a.- = min{max.{x-2
£y [ P32 ] : ( J(

s A. =1 and xeR -

of course, bY expressing optimality for Sy Problem as the solution

of conditions (7), we have cast it as a linear complementarity problem.

paper in these proceedings. Explicitly, conditions (7) ask for the solution of

- 4 ek 3 @0
V¥ F VY Ayt i ™0

This formulation opens a number of possibilites for computation.
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2 2
8 x DA -a.)" = min max(x-a,
(8) m?E\L»cJJ(ZkKK&kJ xj(a)
where A > 0, Zjhj =1, and xeR". In this form, both programs conceal their
nature as hybrid programs but exhibit a saddlepoint property that could have
been discovered by studying the following O-sum 2-person game: Player 1 chooses

A >0, Ejkj = 1. Player 2 chooses x in the convex hull of [al,..-,an].

Player 2 pays Player 1 the amount Zjhj(x-aj)g. If this payoff function is
denoted by W¥(A,x), then m%x min ¥(A,x) = min m%x ¥(A,x) since the strategy
X p
sets are compact and convex, and the payoff funection V¥ is concave in A and

convex in x. Since, for given A, the minimum over x is achieved at
X = kakak and, for given x, the maximum over A is achieved at a pure
strategy chosen by mgx(x~aj)2, this saddlepoint statement is exactly (8)
again. 5

Finally, the expression on the left side of (8) admits a physical interpre-
tation. We wish to distribute weights on the points [al,...,an} so that the
second moment about the center of gravity of those weights is a maximum. This
moment can be interpreted as the moment of inertia about an axis perpendicular
to the space in which the points lie. The duality relation then says that the
radius of the minimal circle enclosing the points.is the maximum radius of
ggxaticn of.tﬁe system, the maximum being taken over all possible distributions
of the unit mass among the points al,...,an. Here the radius of gyration is as
discussed in Goldstein [29]. It would be interesting to know if this duality
has been studied in the literature of mechanics or of geometrical optimization.

There are a number of other observations that could be made about this
ancient problem. However, it should be clear by now that we can probe the
mysteries, both theoretical and computational, of such classical optimization

problems more efficiently today than we could 25 years ago.
8. A SERMON

This sermou will be short. We have seen that the same result, which is

central to the subject of nonlinear programming, was found independently by
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mathematicians who found their inspiration in the calculus of variations,
geometrical inequalities, the theory of games, duality in topology, network

theory, and linear programming. This result which has proved to be useful, at

least in the sense of suggesting computational algorithms, was sought and found
first with no thought given to its application to practical situations. 1t was
rediscovéred and recognized as important only in the midst of the development of
the applied field of mathematical programming. This, in turn, had a beneficial
effect. With the impetus of evident applicability, the mathematical structure
of the subjects neighboring mathematical programming has deepened in the last
quarter century-. A scattering of isolated results on linear inequalities has
been replaced by 2 respectable area of pure mathematics to which this symposium
bears witness. Notable achievements have been recorded in the subjects of
convex analysis, the analysis of nonlinear systems, and algorithms to solve
optimization problems. This has been possible only because communication has
been opened between mathematicians and the potential areas of application, to
the benefit of both. The historical record is clear and I believe that the
moral is equally clear: the lines of communication between applied fields such
as mathematical programming and the practitioners of classical branches of
mathematics should be broadened and not narrowed by specialization. This

symposium is a constructive step in this direction.

APPENDIX

The purpose of this appendix is to place in print the precise results
obtained by Karush in his pioneering work [2]- With the exception of some
preliminary results on linear inequalities, complete statements are given for all
of the theorems and corollaries. No proofs are included since these are now
readily available in the literature or are easy to reconstruct. The notation of
t£he original has been conserved; in particular, the convention that a repeated
subscript indicates summation is followed. The titles of the sections, the

statements of results, and the references are unchanged; some connecting text

has been
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has been freely rendered.
1. Introduction
This paper treats the problem of determining necessary and sufficient
conditions for a relative minimum of a function f(x) subject to %a(x} >0
for x = (xl,...,xn) and @ = 1,...,m, where the functions f and g, are
required to have continuous derivatives of order one or two. By a well-known

- ; A— . o
argument, we may restriet our attention to minimizing peints %~ where

qﬂ(xo) = 0 for all «. Differentiability assumptions on f and g, near x°

are as follows: Class C' for Theorem 1.1, Sections 3 and L; Class C" for the

other theorems of Section 1, Sections 5 and 6.

The results of Bliss [20] for minimizing f(x) subject to equations

h (x) =0 for o= Ly

Ly > are used in the proofs. They are listed here for

comparison with the results of this paper.
THEOREM 1:1. A first necessary condition for f(xo) to be a minimum is

that there exist constants BO, ﬁq not all zero such that the derivatives HX

of the function

H=£8 f+ £ h
(o] oo

: o
all vanish at x .

IEMMA 1:1. If ”sz (xO)H has rank m, then for every set of constants
i
ns (i =1,2,...,n) satisfying the equations

o
huxi(x }qi =0

there exists a curve xi(t) having continuous second derivatives near + = 0,

satisfying the equations ha[x(t)] = 0, and such that
o ¥ _
xi(O) =%, X (0) = n; -
THEOREM 1:2. If ”%}x (x°)| has rank m and £(x°) is a minimum then
i

the condition

o
H _ (x)on. >0

* X < 52 —O

must hold for every set Ny satisfying qjxi(x }qi = 0, where H=f + %qu

is the function formed with the unique set of miltipliers EO =1, %2

belonging to 7°.

Our final excerpt from Bliss's Ppaper is a sufficiency theorem.

P — T
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THEOREM 1:3. If a point © has a set of multipliers £ =1, %,

which the function R Eaﬁa satisfies the conditions

o o
= . >
Hx‘(x ) o Hx.xk(x }nlnk o
4 i
for all sets Ty satisfying the equations
0 —
haxifx )“i =0,

then f(xo) is a minimum.

o, Preliminary theorems on linear inequalities

This section contains properties of systems of linear inequalities that are

used for the proofs in the later sections. These inelude Farkas' Lemma 1301,

various results from Dines and McCoy [31], and Dines [32].

3. Necessary conditions involving only first derivatives

A solution A = (%l,RO,...,k ) of

We make some preliminary definitions. A

(x°)\, >0 (¢ = 1,2,..-m),

S, i
1

ny

will be called an admissible direction if A is not the zero vector. A

—_—

regular are x,(8) (1= L2y..eons 05 t <t.), willbe called sdmissible in
case ga[x(t)] > 0 for every Q@ and t. A point %x° is a normal point in
case the mabrix

" (o]

Hglxi(x )

has rank I

THEOREM 3:1. If f(xo} is a minimum then there exist multipliers ﬂo, Ba

not all zero such +that the derivatives Fx of the function
i

7 =2 )
F(x) JSx) + Baga(x)
all vanish at xo.
THEOREM 3:2. Suppose that for each admissible direction A  there is an

st : 2 o TR . 4 A
admissible arc 1ssulng from X in the direction A. Then a first necessary

condition for £(x°) to be a minimum is that there exist multipliers £, S0
such that the derivatives Fx of the function
: i

F==F+4 Eaga

211 vanish at X -

conclus

For bre

conditi
CO

necesssa

where
i
the hyp

but in

The onl
gax(O,C
hypothe

obvious

(a,o).



for The condition that there exist multipliers Ea < 0 satisfying the
conclusion of Theorem 3:2 will be referred to as "the first necessary condition".
For brevity, the property that for each admissible direction M there is an
admissible arc issuing from x° in the direction A will be called property .
COROLLARY. Suppose that for every admissible direction A it is true that
2 %3X'(X0)hi = 0 implies that %inxk(xo)hihk > 0. Then if f(xo] = minimum

the first necessary condition is satisfied.

s that are THEOREM 3:3. Suppose there exists an admissible direction A for which
a [30], Bopsc (xD)Xi >0 for every «. Then if £(x°) = minimum the first necessary
i

condition is satisfied.

COROLLARY. Suppose m = n and determinant Hg}x (x°)] # 0. Then a
i

,An] of necessary condition for f£(x°) to be a minimum is that
- E
£ (x%)e, >0 (@ =1,2,...,n),
K. L =
at [04
A ' . " ; e o
where ”031” is the inverse matrix of Hg}xi(x |-

Saiule dn It is easy to give an example in which the functions gy satisfy neither

vint in the hypothesis of the corollary to Theorem 3:2 nor the hypothesis of Theorem B3y

but in which the hypothesis of Theorem 3:2 is satisfied. Let

g, (x,y) = % + (y-1)°-1 >0 A
2 2
g&(6y) =4 - [x“+(y-2)] >0
£
s B by g3(x,yj =y +x Zu /} ’
determine the class of points (x,y) under consideration. At (0,0) we have
B1x 81y 0 =2
re is an €0y &y || = 0 L.
ecessary g3x E3y 1 0
B0
o=

The only admissible direction is (a,0) with a > 0. There is no solution of

— o~ . -
gax(o,ojml - %(0,0) ?\2 >0 for all «. Also ggxx(o,o)a < 0 so that the

hypothesis of the corollary to Theorem 3:2 is not satisfied. Hewewesw 3§+ e
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24
= . Sufficient conditions involving only first derivatives
A THEOREM 4:1. Suppose m >n and Hgax (x°)|| has maximum rank n. 1 x°
.I !. = i
i is a point satisfying ga(xo) - 0 for which there exist multipliers £a <0

such that F = f + 2.8, has F, (x°) = 0, then £(x°) is a minimum.

COROLLARY. Suppose m = n and determinant Hgax (x°)|| # 0. We let
g

o] .
lIG;,ll ~be the inverse matrix of ||gy, - If X is a point satisfying
i
ga(xo) = 0 such that
£ (xo)cm >0 (@ = 1,2,00050),
g
then f(xo) is a minimum.

o

. i o
THEOREM 4:2. Suppose m >n and ﬂgﬂx (x°)|| has rank n. If x is a

1
point satisfying gﬁ(xo) = 0 such that fx (xo)hi > 0 for every admissible
. i

; . o ..
direction A, then f(x~) is a minimum.

=

5. A necessary condition involving second derivatives

THEOREM 5:1. Suppose f(xo} ig a minimum and there exist multipliers ﬂu

1 ™ = 2 e g g - 3 o
such that F = T 4 Eu%} has Fx‘{x ) = 0. Suppose, further, that Hgaxi(x N

i
has rank r < n with the first r 7rows linearly independent. Then for every

admissible direction T satisfying &g, (xo)ni =0 (x=1,2,...,m), such that
i

there is an admissible arc x(t) of class ¢"  issuing from *x°  in the

direction 1n and satisfying gq[x{t)] -0 for & =1,2,--.,7, it is true that

o]
F o 30 2 0
i"k
where F is formed with the unigue set of multipliers Ea belonging to the
o
i T l_
first r rows of Hgaxi(x )|

COROLLARY. Suppose «° is a2 normal point. Then necessary conditions for

o e ; i 2. <
f(x ) to be a minimum arc that the first necessary condition be satisfied and

that 5
13 (x )n.m, >0
Xixk ik
be satisfied for every admissible direction 7 satisfying
(o]
_ gwi(x Jng =0 (@

1,200 0,m).

1l

6. A sufficiengl theorem involving second derivatives

THEOREM 6:1. If a point x° satisfying ga(xo) = 0 has a set of

multipliers Ea < 0 for which the function F = £ Ba%ﬁ satisfies

for all
then T
1. H.
2. Wi
3. Fr
k, Jc
5. De
6. R.
T | Hi
8. H.
9. H.
10. E
11. A
12. L.
13. M.
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o o i
Fx_(x )= 0, Fx‘x?(x }niﬂk > 0
1 LK

for all admissible directions mn satisfying

o
5uxi(x )ﬂi =05

then ©(x°) is a minimum.

6.

10.

11.

12.

13.
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