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NONLINEAR PROGRA}O{NG: A I{STORICAL !TE\^I
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ABSTRACT

A historical surwey of the origins of nolllinear p}'ogramrLing is presented

with emphasis placed on necessary conrlitions for optimality. The mathematical

sources for the work of Karush, Jolur, Kutrn, and Tucker are traced and compared'

Their results are illustrated by duality theorems for nonlinear prograiris that

antedate the moclern development of the subject'

I. INTRODUCTION AND SUIqMARY

The paper [1] that gave the name to the subject of this synposium was

written almost exactly twenty five years ago. Thrs, it may be appropriate to

take stock of where .we are and hor,r we got there. This historical survey has tr^ro

major objeclives.

First, it r,rill trace some of the influences, both mathematical anil social,

that shapecl the modern development of the subject' Some of the sources are

quite old and long predate the differentiation of'nonlinear programning as a

separate area -for research. Others are comparatively modern and culminate in

the period a quarter of a century ago when this ilifferentiation took place.
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Secondly, in order to discuss these influences in a precise context, a few

key results will be stated and "proved.". This wi.ll be d.one in an almost self-

contained manner in the spirit of the eall for this symposiurn which announced

that the lectures would be pedagogical. The definitions and statements should

help to set the stage for some of the papers to follow by prorriding a formal

framework. In ad.dition, these statements will allow the cornparison of the

resul-ts of various mathematici-ans who n,ade early contrlbutions to nonlinear

prograruning. This will also give the pleasart opporti.utity to rewrite some

history and gi,ve W. Karush.his proper place in the d.evelopment.

In $2, a d,efinition of a nonlinear progra.n is given. It \,r-iIL be seen to be

a straightforward generali-zati.on of a linear prograrn and those experienced in

this field vill recognize that the definition is far too broad to admit very

nn-rch in the way of results- However, the immediate objective is the derivation

of necessary conditions for a loca1 opti:num in the d,ifferentiable case. For

this purpose, it rdLl be seen that the definition includes situations in which

these conditions are well-knor,m. On the other hand, it will be seen that the

definition of a nonlinear prograr b-ides several inplicit traps which have an

important effect on the form of the correct necessary conditions.

In $3, an account is given of the duali-ty of llnear programrring as moti-

vati-on for the generalization to follow. This duality, although it was d.iscovered

and erplored with surprise and delight in the early days of llnear programning,

has ancient and honorable ancestors in pure and applied nrathematics. Some of

these are explored. to round out this section.

With the example of linear prograrilnilg before us, the nonlinear program of

$2 is subjected to a natural linearization r,rhich yields a setoflikelynecessary

conditicns for a local optirnurn in Sh. Of course, these cond.itions do not hold.:"
in f\rll generality f,{-itflout a rigularity contlition (i6nventionuUy citiea tiiuo'

+a#*trqg: ).. Wrren it is invoked, the result is a theorem vtrich

has been incomectly attriblted. to Kuhn and T\rcker. This section is completed.

by a description of the backgropnd of the 1939 r+ork of W. Kamsh [2] ('^thich is

further amplified. by an Appendix to this paper).
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NON],N{EAR PROGMM}iIING: A IIISTORICAL \TIEW

As will be seen in $\, the motivation for Karush's vrork was d'ifferent from

the spirit of mathematical programrning that prevailed at the end of the lgl+O's'

In $t, an attempt is mad.e to reconstruct the influences on Kuhn al1d Tucker that

led thera to Kanrsh's result. These include such diverse sources as electrical

networks, garne theory, and. the classical theory of Lagralge nultipliers'

Independent of Karrrsh, arrd prior to Kuhn and Tucker, Jotrn had published. a

result [3] gidng necessary conditions for the ]oca1 optirnm of a f\rnction

subject to inequalities. lli-s motivation was different from either of the other

works and is describea in $6" A cruciaL example that is tlpi-cal of the type of

geometricopti:n-izationproblemthatinfluenceclJohnisSylvester'sProblem.

This is given a modern and concise treatment in $7'

The conclusion of the paper, contained in $8, is a sernon on the nature of

applied mathematics- It rnay be appropriate ln that it was deliveredatthe first

sessicn of the sytnposir.rm on a Sunday morning'

2. WHAT TS A NONIJ}IEAR PROGRAM?

with malice aforethought and considerable historical hind.sight,

progra:n will be d.efined as a problem of the following form:

ti* 
t f(xr'"''*.) for "feasible" solutlons to

er(xr, - -.,xrr)-bt = -Ya

8r(xtr"',"r)-br = -nt

for given f\:nctions f :8Ir. . .:8m and real consta:rts blr"' ,br-, 
, ,'Feaslble'

mears that each x: and yi is required a" o?.--84. *14**-.Jr
The following examples show that this definition encompasses in a natural

way a host of important special cases.

(f) If we specify that al1 *j are free, all yi are zero, and all bi

are zero, then the Problem reads:

a nonl-inear



T{AROLD W. KUHN

Maxi-rnize f (xar. . . ,*r) subject to

er(x1,...rxrr) = o

8.(xt,"',xn) = o'

This is the classical case of equality constrained (nonlinear) optinization

treated first bY Lagrange.

(2) rr f(xr,... ,*.) = tr*lt ' ' '*cnXn is linear, each

8r(xrr...,",,) = til*l'" ''uin*., is linear, and all *j and yi are required

to be nomegative, then the problem reads (in customary vector-matrix notation):

Maxinize c'x subject to k 5 l' * i' 0.

This is the fa.niliar case ol a linear prografi in canonical form'

(:) If f ancl all of the gi are linear f\lctions as in (2) and we

require all X. to be notrnegative and all yi to be zero, then the problem
J

reacls:

Maximlze c'x subject to A:< = br " ] 0'

This is a Linear progra.m in standard form.

(l*) I€t S be any set in Rn and let er(x) be the characteristic

f.nction ol S (that j s, Cr(x) = f for xcS a'nd Er(x) = O other',rise) '

Then, if m = l, bl = r, att 'j 
are free, atrd vl = o, the problem reads:

Maxirnize f(x) subject to xeS.

Of course, the generality of this statement reveals ln rather stark form that

the definltion of a nonlinear progran is too broad for any but the most

superficial results.

A fina1 example will illustrate an importalt d.istinction vrhich rmrst be kept

in mind when a nonlinear prograln is studied. Example (4) shows that, for'a:ry

set S, we ca:n present the problern: "Maxinrize f(x) subject to xeSr" as a

nonlinear prograJn in a,t least one way. The set S is called the set of

feasible solutions for the problem and will be the same however the problem is

presented. However the same problem may have several presentations and some may

be better behaved than otLrers.
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(r) Let s be the triangle in the (xrrxr) pla-ne with vertj-ces 1o,tfz),

(t,o), an.d (Orl). Consider the problem: Maxinrize f(xt,xr) subject to xeS'

This has two si-rnpLe algebrai-c presentations that follow:

(") Ma-rinize f(xr,xr) subject to

r - -tv +l = -rtxlTx2-r - -JL' "2

xrlo, xr)0, v1io, Y2?0.

(t) Maxirnize t(xr,xr) subject Lo

(x-+x^-I) (x-+2x^-1) - -y,'L 2 L 1 -L

X,>O, x-20, Y.]'O.
a-L-

Note that if f is linear then (u) is a linear program in canonical form, and

so is as well-behaved as one could desire'

3. DUALITY TI{ LINEAR PRCGRAMMING A-}D BEFORE

To motivate the d-erivation of the necessary condi-tions for optimality to be

given in the next section, let us place ourselves in the position ofmathematicaL

prograrmers in thd labe )+O's. Von Neunann hacl glven a formulation of the dual

for a linear progra:n [Ir] ana Ga1e, Kuhn, and Tucker ]rad provided rigorous

duality theorems and generalizations [)]. These are easily stated in a compact

form using the terminology of the preceding section'

Let us start wi-th a linear progran, that is, with f and all gi linear'

As before, thls maY be written:
-t''* I";. 'e"tii' 1 'ri,edsinieii iorutione*o'

Ax-b -i':y.

Here, as before, "feasible" is a requirement that each "j 
and yi be non-

negati-ve, zero,.or free. This specification induces a notion of "dual feasible"

for a related d*a1 sLlnimm problem on the 
-same=-1"a"..,,,..11=t.=,ly1e1 

reads:

.ri.i HS{H$6:,r,H(,,i;}il-,1'+-:€r..: flii.idffi=::.€gd1d6t l1i:EEia*to6sito
...,,:,,,..6*f i'rr4!i1:i l1

vA-e *- u.

In this dual linear program, each *j a-nd ti is required to be nonnegative,

zero, or free if the corresponding variable *j or yi has been required to be

be kept

r aJly

lern is

some may
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norulegatlve, free,

prograJI.

The pair of programs can be displayed' conveniently by a diagram

A. W. Tucker.
l

= f (max) .

=h(nin)
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or zero, respectively, in the origi"nal (or pri.mat)
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diagramavailable'itisobviousthatforallsolutions'feasible

L+-,h:l = u'x+v'Y

while the clefinition of leasibility for the dual pair implies that

li;.r#-
for aL1 feasible soLutions. Hence, triviaLly, h-f = o is a sufficient

conditionfortheoptirnali.tyofapairoffeasiblesolutions.Necessary

conditions are contained in the folloi'ring theorem:

Theorem ].1: If (;,') is an optimal feasible solution for the primal

progran then there exists a feasible solution ("rt) for the dual prograrn w-ith

[.x+v.y = O. (and hence an optimal feasible solution for the dual program)'

As was said- j'n the introduction, this duality theorem ''was dlscovered aJId

erplored with surprise and delight in the early days" of our subject' In

retrospect, it should have been obvious to al-l of us' Sim'ilar situations had

been recognized. rmrch earlier, even in nonlinear prograns' The phenomenon had

even been raised- to the level of a method. (tnat is, a trick that has worked more

than once) by Courant and,Hilbert [6] in the follo'ring passage (sbghtly amend'ed

and rsith u-nderlining ad.ded) l

"The Lagrange snlltipller method, lead.s to several transfornations which are

importalt both theoreticatly and practlcally'

By means of these transformations new problems equivalent toagiven problem

ca:r be so forrmlated. that stationary conditions occur sj-mrltareously in equivalentl

A o
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NONLINEAR PROGRAMIVTNG : A TIISTORICAL \[EW

problems. In this way we are led to tra.nsformations of the problems which are
important because of their slannetri-c character. Moreover, for a given maximum
problem with rnaxinnm M, r^re shall often be able to find. an equivalent nrinilrr:m
problern with the same val-ue M as n-ini-mumi this is a useful tool for boulding
M from above and below. "

of the elements

of such duality in the mathematical Llterature. These elements are:

(") A pair of optimization problems, one a maximm problem with objeetive

function f and the other a minim.u problem with objective fwrction h, based

on the sarne datal

(t) For feasible solutions to the pair of problems, always h : t;

(") Necessary and sufficient conditions for optimality are h = f.

Surely one of the first situations in which tlr-is pattern was recognized

originated in the problem posed by Fermat early in the ITth century: Given

three pointS in the pIane, find a fourttl point such that the suoofits distances

*o tge'*?lpd.e.-:g:iv$points is a minl-nrum. Previ-ousl-y, on several occasions ([T],

[B], and [9]), f have incorrectly attributecl the dual problem to E. Iasbender

[IO], writing in 1846. F\rther search has led to earlier sources. In a

remarkable journal, not rn-rch read today, The Ladies Diary or Womal's Al:nanack

(L7rr), the follor+ing problem is posed by a Mr. Tho. Moss (p. 4T): "In the

three Sides of ari equiangu.lar Fleld stand three Trees, at the Distalces of 10,

12, aJId 16 Chains from one another: To find the Content of the Field, it being

the greatest the Data will ad-nrit of?" !trhile there seems to have beennoerplicit

recognlti-on of the connectlon w-ith Ferrnat's Problem in the Ladies Diary, the

observation was not long in coning. fn the Annales d.e Math6rnatiques Pures et

Appliqu6es, edited by J. D. Gergonne, vol. I (1810-11), we find the following

problem posed on p, 3Bl+: - .ih* }**g*"t possible
.. ., :

q4!i+;ierel.-,p*iu"er"iiid$c;t=igliF rn the sotutions proposed by Rochat, vecter,,

f'auguier, and Pilatte in vo1. I1 (1811-12), pp. BB-9:, the obsenration is made:

"Thus the largest equilateral triangle circumscribing a given triangle has sides

perpendicular to the lines joining the vertices of the given triangle to the

point such that the surn of the distances to these vertices is a minirm:rn. (p.9f).

.t4.\..::1;.::::;:. a ..:a::::::::::a:;i:;tu;::-:.:It is a scholarly challenge to dlscover tne;1{!{1,{,!i

Lt

'v
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=*nq;lAn'$..:.ffiFFF*:==+ 't*i:l 
'slE'=+: ';ia'i 

.d't .. ,or distances rrbm r

!W: i*:5i.aee*:,**.
.'.' .."-:- j?" \i*rr - 

';,

al (p. 92)". The credit for recognizing this duality, which has all. of

the elements l.isted above, appears to be duet"#Etbn, professorofmath6matiques

speciales at the Lyc6e de Nismes. Until f\rrther evidence is discovered., this

narst stand as the first instance of duality in nonlinear progra"rnning !

.i-

{:!i'ld"r-ffi; o '

The generalization of Theorern 3.I vrill be derived. for a nonlinear. program

in canonical form (cornpare Exarnple 2 of $a):

pr(

Maxindze f(") for feasible solutions of

e(x)-n = -t
vhere feasibl-e means afl *j and yi are nonriegative. (Here we have used

g(x) as a natural notation for the column vector of values (sa(*),...,Sor(x)).)

We seek necessary cond.itions that must be satisfied by a feasible solution

(;,t) to be locally optimal, Therefore, it is natural to linearize by

differerrtiating to yield a linear progran:

Maxinrlze df = f'(i)a* for feasible solutions of

e'(x)dx - -dy.

(Here, we have further restricted the nonlinear progra.m to have differentiable

f and gi. hrrthermore, we have used f'(t) a.nd C'(i) as the customary

notations for the gradient ol f and the Jacobian of B, respectively,

evaluated at ;. )

Some care must be taken with the speeification of feasibility ln this

linear prograrn. Intuitively, r,re are testing dj-rections of change (a*ray) from

a feasible solution (",t) and we wart the resulting position (x+Oxry+dy) to

be feasi,ble (or feasible in some limiting sense). Thi-s leads naturally to the

sp€

u.
J
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following specification oe feasibility for the linearized problem:

The variabl" kj (dvi) is nonnegatjve if fj = O (V, = O);

*j and d"i are free.
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NONLINEAR PROGRAMMING : A IIISTORICAL VIEW

The fact that the linearized problen is a linear prograJn can be presented

as the following diagram (wLr-ich includes the variables for the dual linear

program):

dx -1

c'(i) 0

f '(i) o

=u =O(riin)

The specification of feasible (a*,ay) given above induces the following

specification of feasibLe (u,v):

The var,iable u. ("i) is nor:negative if ij = O (V, = o); othenvise

u. and v- are zero.
Jr-

Noting the fact that (;rt) is feasible and hence nonnegative, the specification

of feasible (nr.r) carr be rephrased. as noruregativity ald orthogonality to

(i,v),

The variables (r,.r) are feasibl-e if and only if they are noruregative and

u'x+v'Y = 6.

Theorem 4.1: Suppose df S O for all feasible (O-"ray) forthelinearized

nonlinear program in casonical form at a feasible (trt). Then there exist

(",..):O suchthat

ve'(I)-r'(;) = "
[.x+?.y = o.

Proof: With the hy'pothesis of the theorem, the primal linear program has

the optimal solution (a--,ay) = (o,o). Hence, by Theorem J.I, there exists a

feasible soLution (u,;) for the dual program- The conditions of the theorem

combine the linear equations from the diagram and the characterizatibn ot'

feasibility given above.

To complete the derivation of the necessary conditions, we need.tolntroduce

assumptions that_ insure that the linearized problem correctly represents the

possibilities fon variation near ("rt). Since the work of Kutrn and Tucker,

these assumptions have been ca1led constraint qgqlificallqnr.

-l = ar(max)

n
EI
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Definition 4.I: A nonlinear progran satisfies the

1cA) at a feasible solution (x,t) 1f for every feaslble (a"'ay) for the

linearized problem there exists a sequenc" (*kryk) of feasible solutions arrd- a

sequence \ of nonnegative numbers such that

fim *k = * a$d lin ln(*k-;) = a*.
ke6 kr6

Theorern )+,2: Suppose a nonU-near program satisfies the CQ at a feasible

solution (;,t) at .which f achieves a local max|aum. Then d-f < 0 for al1

feasible solutions (a"ray) for the linearizecl problem-

Proof: S the differentiability of f'

f(xk)-r(x) = r' (x) 1*k-x)*eol*k-*l

where lin €, = O. Since (irt) is a local maxinn-tm,
Kk '@ k -, - , k -,0 J f '(x)l*(x"-x)+tkAklr-xl

for k large enough. Taklng lirdts

o I f '(x)ax+( rim eu) laxl = ar.
k+@

n
LJ

These two thecrems are combiled to yield the necessary conditions that are

sought.

Theoren l+.1: Suppose a nonlinear prograr

CQ at a feasible solution (;rt) at rnrhi-ch f

there exist ('rrt) > O such that

ig'(i)-r'(;) = "
['x+v'Y = o'

The result just stated is customarily called the Kuhn-Tucker conditions.

The folloging quotation from Takayama [11] gives a more accurate account of the

history of these conditions:

"Linear programroing aroused interest in constraints in the form of
inegualities and- in the theory of linear inequalities and convex sets. The
Kulm-fucker stud.y appeared in the niddle of this interest wlth a fu1l
recognition of such developments. Hovever, the theory of nonlinear programn-ing
i,rhen the cop*E!Xr?=+Ift-s. a;e all_."in-!i-t"-9 ,{,o.=t4.,.-o.f=.=." 

alities has been knovm for a

long time ';;,,::ftf::#fr.;i1: . The inequality constraints were
treated in L faiity satisfactory nanner already in f939 by Karush. Karrrsh's
vork is apparently under the influence of a si-nrilar work in the calculus of
variations by Valentine. Unfortunately, Karr.rshts vork has been l:irgely ignored' "
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Although knovn to a number of people, especially mathematicians with a

corurection with the Chicago school of the calculus of variatj-ons, i-t is certainly

true that Karrrsh's work has been ignored. A diligent search of ttre literature

has brought forth citations in [f2], 113], [1L], and l1)l to add to Takayarna's

book referenced above. Of course, one reason is that#kryfqq!$4m€ilf has ngb been
'- ' 

::'l!ll

' ..-.:.::::::::::.:irLdllil! l to allov the read.er to see for himse].f that Karush was indeeil the

first to prove Theorem )+"3, the Append-ix to this paper provides excerpts from

the origi-nal work. precisely, THEORE"M 3:2 is equj-valent to fheorem \.3.

Karush's vork vas done as a naster's thesis at the University of Chicago

und.er L. M. Graves, who also proposed the problem. It was written in the fjlal

years of the very influential school of elassical calculus of variations that

had florished at Chicago. One may suppose that the problemtnas"set as a fj11ite-

f,lnensional version of research then proceedlng on the calculus of variations

m**-::aariuadt#t*ia" conlitions [161. G. A. Bliss was chairman of thedepartment

and M. R. Hestenes \^ras a young member of the faculty; bothof thesemeninfLuenced

Karush. (rt is amusing to note that this group also alticipated the work in

optimal control theory, popularized under the name of the "Pontryagin" maxi-n:r:n

principle. For details, see [17J.) As a struggling graduate student meeting

requirements for going on to his Ph.D-, the thought of pubticationneveroccurred

to Karr-lsh. AIso, at that time, no one anticipated. the f\rture interest in these

problems and" their potential practical appLicatlon. We shall return to tLris

question in the last section of this paper.

The constraint qualification employed by Karush is identical to that used.

by Kuhn and- Ttcker and hence is slightly Less general than Definition 4.1.

fr.lciselyr -b,edrq$4f;Ad 
thd,! th"Ffg#4ist arcs. of feasible solutio-ns issu:ing fron

t(. f+ffi.frS#ffii:df}Wrhe need for some such resulari-ty condition

was familiar from the equality constrained case. As the proof of Theorem 4.3

given above shows, the inequality constraineil case requires the equality of a

cone generated by directions that are feasible from ("rt) and the cone of

feasible directions (a*ray) from (",t). Since the latter cone depends on the

nature of g(x), two problems with the sane objective fi:nction and the same
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feasiblesetbutspecifiedintvodifferentwaysmaybehavedifferently.Example)

at the end. of $2 illustrates this phenomenoninastrikingway' If f(xt'x') = x'

then the probrem as r.ormulated in (a) is a rinear progran with theu-niqueoptimal

solution 11 = 1' A2= o' Jr- = o' However' 1t is easily verified" that' as

formu-l-ated in (t), the "same" problem does not satisfy the constraint qualifi-

cation at this optimal solution and the conditions of Theorem 4'3 cannot be

satisfied.

Afulldiscussionofeonstraintqualificationsandtheirhistoricalante-

cedents r^rou1d take us too far afi-eld'' However it is appropriate to cite at this

point another early and important but unpublished' contri-bution to this area'

This is the work of Morton slater [lB], issued as a cowles cornmission Discussion

PaperinNovember,lg)o,andof.benreferencedsirrcethen.Slater'smainresult

isanelegantregularityconditionthatimpliessaddlepointnecessaryconditions

for nonlinear progra$s vithout differentiability of f and g' We shall return

to this in the nert section'

'. 
THE KUHN-TUCKER PAPER

ThebackgrourrdoftheworkofKarush.wassodj-fferentfronthatofKuhnand

ll\lckerthatonernLrstmarvelthatthesametheoremresulted'Fromthemidlo's'

T\rcker had sustained an lnterest in the duality betvreen covariant and contra-

variantthatarisesinttretensorcalcu}usaJldinthedualitybetweenhomology

and cohomology that arises in combinatoriaL topology. He vas also aware of the

pre-topology appeararce of such phenomena in the deveropment of the theory of

electricalnetworks.However,thisintellectualawarenessrn.ighthavelainfallov

except for a happy historical accident' ,1,*; e, n*ttzie

onnections betlleen

the then very ne'w subject - 
Tucker

happened to give Dantzig a lif't to the train station for his return trip to

Washington.OnthewayrDantziggaveafiveninuteexpositionofwhatlinear

progra-mrningwas,usingtheTrarisportationFrobleroasasimpleillustrativeexalaple.
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This sor:aded like Klrkhoff's Lavs to [\rcker anal he nade this observation cturing

the short rid.e, but thought little about it until later. Dantzig's visit to

Princeton resulted. in the initiation of a research project vhich had as its

originaL object the study of the relations betr,reen linear prograns and matrj-x

ganes. (Statfea in the sununer of 1!l+B by David Gale and Kuhn, graduate stud.ents

at Princeton, with Tucker as prilcipal investigator, this project continued- in

various forms under the generous sponsorship of the 0ffice of Naval Research

urtil l9?2. ) "eS.glq4atee by a.potel;cirCul-ated:iprivately by yon Neuman t4l, tbe
Fr. - :*' : :

du{l,W !llegren-r-o5}.X.a_e4r:4'ger.e..+1ry,, 3.lifiF.?.t das pr-b+aii [)] ana

various connections were established between the solutions of matrix garnes and

linear progratrrs. As arr example, in the sr-mmer of 194!, Kuhn produced. a one-page

working note expressing the duality of linear programming as a sad-dlepoint

property of the Iagrangian erpression:

L(x, u) = c'x+ v(n-'qx)

defined for * ] 0, ,r - 0. Thus formulated, the optimization problems involved

(maxinrize in x and miniruize in v) yielded. farniliar necessary conditions with

only minor modifications to ta.]<e accoult of the bound.aries at O. Of course,

this expression generalizes naturally to

L(x,v) = r(x)-v.e(x)

in the nonlinear case and this saddlepoint problem was later chosen as the

starting point for the ertrrosition of the Kuhn-Ttcker analysis.

On leave at Stanford jl the fall of I9\9, T\rcker had a chance to return to

question: What was the relation between linear progranrning and the Kirkhoff-

Ma-xwell treatment of electrical networks? It was at ihis point that he recognized.

the parallel between Maxwell's potentials and Lagrange rnrltipliersandidentified.

the.r.rrderlying optin-ization problen of rrininizing heat loss (see tf9]), Tucker

then wrote Gale and Kuhn, inviting then to do a sequel to [l] generalizing the

duality of linear prograJns to quadratic prograJ[s. Gale declined, Kuhn accepted

and the paper developed by correspondence betvreen Stanford, and Princeton- As it

was written, the emphasis shi-fted from the quadratic casetothegeneralnonlinear

case and to properties of convexity that imply that the necessary con&ltions for
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an optirrum are also sufflcient. In the final version, the quadratic programming

casethatfiguredsoprominentlyinTucker'sl'esealchappearsbesitletheduality

oflinearprogramningasan.instarrceoftheapplicationofthegeneraltheory.

A prelirdnary version (without the constrai't qualification) was presented' by

Tucker at a seminar at the RAND Corporation in May 1910' A counterexample

provided by c. B. Tompkins led to a hasty rev-ision to correct this oversight'

FlnaLly, this work night have. appeared in the published literature at a

muchlaterdateYlereitnotforafortuitousinvitatlonfromJ.Neymamto

presenta.rrinvitedpaperattheSecondBerkeleyS}'nposiumonProbabilityand

Statistics in the sunmer of 1910'

The paper [1] formulates necessary and. sufficient conditions for a sad"d]e-

point of any dif'ferentiable f\xrction Q(x,v) vi-th nonnegative arguments, that

is, for a pair (;rt) > o such that

cp(x,v) < Q(xrv) S q(x,vJ forall xlO,v)0.

It then applies them, through the Lagrarrgian L(xrv) = f(x)-v'e(x) introduced

above, to the canonical nonlineirr proglaJx treated. in $[ of this paper' The

equivalencebetweentheproblemsrsubjecttotheconstraintqualification'is

shorvntoholdvrhenfand-allciareconcavefr:rrctions.Itj.snotr:d,butnot

proved in the paper' that the equivalence still holds when the assumption of

differentiability is dropped. of course, for this to be true, the constraint

qualification must be clranged since bothKarrrsh'squalificati-onandDefinition \'1

use derivatives. As noted. above, Slater's reguaarity con&ition [fB] is an

elegant way of doing this. It merely requires the existence of an ? : o such

that e(i) < O, and makes possible a complete statenent without differentiabi'l ity'

ofcourse,fornostapplications,thecondltionsofthed.ifferentiablecase

(Theorem \'l) are used.

6. Tm JoIIN coNDlTroNS

To establish the relation of the

earlier, we shall paraphrase Takayama

paper of F. John [3] to the work

again [ll]:
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"Next to Karrrsh, but sti1l prlor to Kutrn ancl Tucker, Fritz John consid-ered.
the nonlinear prograrnraing problem with inequality constraints. He assumed- no
qualification except that all f\nctions are.continuously differentiable. Here

the Lagrangian expression looks like vof(x)-v'g(x) instead of f(x)-v'g(x)
and vO can be zero in the first order conditions. The Karrrsh-Kuhn-Tucker
constriint qualification anounts to providing a condition which guararitees
vo ) o (tfrat is, a nornality condition)."

This expresses the situation quite accurately for our purposes, except to

record that Karush also consid.ered nonlinear progralns without a constraint

qualification and proved the same first-ord.er cond.itions. Karrshrs proof is a

direct application of a result of Bli-ss IZO] for the equality constrained case,

combined with a trick used earlier by Valentine [lA] to convert inequalities into

equations by introducing squared slack variables. For the equality constraj-ned

case, the result also appears in Carath6odory [zf] as Theorem 2t p. \77'

Qlestions of precedence aside, what ted.,fffitz John to considerthisproblen?
.ilnF,?.;.ata.. :.:.::::::.t. . rrn:,,

Mar:welouslSr, his motives \,Iere quite diflerent from those we have met previously.

The main impulse ca.me from trying to prove the theorem (wlr-ich forms the main

appLacarr-on an LJlT that asserts ttratr@F.=$,Si,i d,@.'td.,tir';,, .;k
in Rn lies between tvo homathetic eliipsoids rr r*ti"" -l o, and that the

outer ellipsoid can be taken to be the ellipsoid. of least volume contai-ning S.

The case n = 2 had been settled by F. Behrend [22] with lrhom Jobn had become

acquainted in 19311 in Cambridge, England. A student of Jolin's, O. B' Ader,

dealt r+j-th the case n = 3 in f938 [23]. By that ti,ne, John had become deeply

interested in convex sets and in the inequalities connected. with then. Stimulation

came also from the trork of Dines and Stokes, j.n r,rhi-ch the duality that pervades

systems of l1near equations a.nd j-nequalities appears proninently. Ader's proof

strongly suggested that duality was the proper tool for this geometrical problem

in the n-di-nensional case, a;rd John was able to usc these ideas to write up the

problem for general n. fhe resulting paper was reiected bytheDrke Mathematics

Journal ald so very nearly joined- the ranks of unpublished classics in our

subject. Hovrever, this rejection only gave more tj.rne to explore the implications

of the technique used to derive necessary conditions for the ninj,num of a

quantity (here the volume of an ellipsoid) subiect to inequalities as sid-e

conditions.
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It is poetic justice that Fritz Jotrn r^ias aided in

heuristic principle often stressed' by Richard Courant

'' ,r : . *.1 - :^ -;1";.+t

solwing this Problem bY a :

m-sPar

Eucli,

(r)

vhere

sirnpl

(z)

Thus

Pars

foll

Thi-

()*)

(r)

4.E:.;::.;L&t:i.:.:::,4.:Yal1 - -.. -.r-!llllh.i=

*G#-i**€
')nof

J''It tlas the occasr<

courant's 6oth birthdaY in IPI+B ;;;; ;"". John the opportunitv'to complete a'nd

publish the paper [3]' 
unning, optinization,

In summary, it vas not the calculus ofvariationst progr€

orcontroltheorythatmotivlatedFritzJotrrrbutratherthedirectdesireto

find a method' that nould help to prove inequalities as they occur in geometry'

Inthenexbsection,weshalltreatsuchaproblem,used.byJohnasa.nillustrative

exax[pLe, from our present point of vielr'

7. SIT,VESTER'S PROBI'EM

!h)/4,a:::= : ::::aaa.::=

rn l8t?, J. J' sylvester published a one sentence note [2)+].: tnFfl,.a,-,,,=

,*rg=+r?.*iita.:: ae;:iifls?:ffi91fl.rr'iii ''*=b 
*iai'$id set or pointd ill

+.*€;#=#sF The generallzation to an arbitrary bound'ed set in Rt was used by

JotLriin[3]u."ani}lustrationoftheapplicatlonofhisnecessarycol'ditions.

orrrpurposesinthissectionaresj..rtifartohis;u.ehavetheadvarrtageofthe

currnrlativelesearchinnonlinearprogra.rrrri-ngoverthefastquartercentury.

Althoughtheprob}emhasanextensiveliterature(see[2]]forsomeofits

history), it ls only recently that it has been recognized as a quadratic

program by Elzi.nga ana Hearn [26]' More preci-sely' Sylvester's problem can be

formulated as a hybri-d. progra$ (trrat is, a llnear programlrith a sum of squares -

add-ed to the objective function tZT])' As such' it has a natural dual which is

alsoahybridprogralo.Thisfacteanbediscoveredverynaturallybyconstructing

adualusingthetheoryofconjugatef\,urctions[zB],trLenrecognizlngthatthe

dual is a trybrid program' Therefore' Sylvester's Problem must be a hybrid

progra$ in disguise' The treatment given below reverses this process in

traditional mathematical stYle'

We me

for

(3)

I

i

I
I
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I€t &1:...:do, be n given points in Rm. Then Sylvester's Problem in

n-space asks for xEnm mini-nrizing ta*, I x-a, I , vrhere I x-aj I denotes the

Euclidean distance from x to a-. This is clearly equivalent to:

(r) Minjmize ^u*r(*-^r)z /z for xeRm,

r,rhere (*-..)2 = l*-t.12 and the factor of L/2 has been inserted for. J ' J'
si-mpU.fication later. Problem (f) is equivalent, in turn, to:

ltininize v+x2 f? subject to

u**212 2 G-ar)2 /z

for veR, xeRm, and i = Ir"'rn'

may revrite (2), introducing slack variables yj and erpLicit coordinates

a - and x. as:
J

Minimize u*r.*l/z sub ject

yj = v+t.x. u. .-t'.u? r/z > o

for veR, (x,)eRm, and i =

Thus Sylvester's problem is equivalent to a hybrid

Parsons ald Trrcker [27]. This program is displayed

folLowing schema:

I_I-1LN

.L

n

-f

=Yl =Jr, =h

two prograds (tne first of which

l,tinirdze H = n+x2 /z for

h = v. v. = v+I.x. u. .-u?/z , o,' "J ]- a r_J J',

!{aximize r = t-zz /z for
s l * I - = s. a..I .. I. >-j,.j - -, "i -j*ij"j, 'j 

=

ivi
I,
I-'r 
I.l
i

I.t

I

xlml
L-rl
I

I

lr' '' ,tr'

progratn in the sense of

. i^rith its dual in the

is exactly (3)):

all i.

0, all i arld. J.
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r'ollovringtheresuJtsofParsonsarrd.llrcker,theseprogra.ursarecoupledbya

duality equatlon' an id-entity that is valid for all v' x' X:

(6) u-r = tiyir '+1x-z)2 f z'

Therefore, H : F for feasible sofutions of ([) a:rd (!) and H = F for

feasible solutions if' arrd' only if:

(r) ujlj = o ror all 
' 

*': 
:':'1 "^.,,*ro"s tobeoptimal'

Conditions (./) are necessary and sufficient for feasible so

The sufficiency is obviousl the necessity is a direct applicationoffheorem \"3'

Sincetheconstraintsarelinearinequalitiestheconstraintqualifj-cationis

trivially satisfied' we have proved (dropping the factor of 1 lz):

the solution

See Eavesr

solution of

(8)

where I >

nature as 1

been discor

A > o. r,l
-t)

Player 2 pi

denoted by

sets are c

convex in

x= Ltr.a*KKK
strategy c

agaj-n.

Finaf

tation. !l

second mor

moment car

to the sP:

radius of

gyration <

of the un

d.iscus sed

has been

Ther

ancient P

mysteries

problems

Thir

central t

for

ol

pa

s

and.

- rl"l *uz*zntrlYla "' *trnyn = o'

This forrnrlation opens a mrmber of possibi-lites for cornputation'

tr'inally, by algebraic manipulation' the maxirm:m progra'In call

sl1ghtly different form with the result:

be given a
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(B) 
5x t;n;(\\%-"i,t = tn 'u*(*-.r)2

ruhere I ) O, t.tr . = 1, a.nd. *.f. In this form, both progralns eonceal their_ JJ

nature as hybrid prograns but exhibit a sad.dlepoint property that could. bave

been d.iscovered by studying the following O-sun 2-person game: Player I chooses

X: O, t.I- = 1. Player 2 chooses x in the convex hull of [.rr..,,*r,].

Player 2 pays Player I the arnount f .l .(x-ar)2. If this payoff f\.rnction is

denoted by ,y(tr,x), then m;x r+r V(A,x) = ri" 5x V(tr,*) since the strategy

sets are compact and convex, and the payoff f\rnction rf is concave in tr and

convex in x. Since, for given 
^, 

the mininum 6ra1' x is achieved at

" = Llt"f. and, for given x, the naxinmm over ), is achieved. at a pure

strategy chosen by ra*(*-u.)2, this sadd.Iepoint statement is exactly (B)
JU

again.

Finally, the expression on the LeJ'b side of (B) adnits a physicat interpre-

tation. We wish to distribute weights on the points {ar,...rar.) so that the

second moment about the center of grrvity of those weights is a na.:rimr:m. This

moment can be interpreted as the moment of inertia about a.n axis perpendicular

of the unit mass arong the poirits d1r...:&rr. Here the radius of gyration is as

discussed- in Goldstein 1291. It would be interesting to know if this duality

has been studied. in the literature of mechanics or of geometrical optim-ization.

There are a nurnber of other obsezwations that could be nad.e about this

ancient problem" Hovever, it should be clear by now that we can probe the

mysteries, both theoretical and computati-onal, of such classical optimization

problems more efficiently tod.ay than vre eould 2) years ago.

o A SERMON

This sermon vill be short. We have seen that the same result, which is
central to the subject of nonlinear programming, was for.rnd. independently by

t9

dbya

be optimal.

heorem l+. 3.

ation is

;he solution

See Eaves'

;olution of

given a
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matheraaticials vho foirnd their inspiration in the calculus of valiations'

geometri-cal inequarities, the theory of ga.roes, duality in topology' network

theory, ancl linear progra'uuning' This result {hich has proved to be useful' at

leastinthesenseofsuggestingcomputationalalgorittuns,vrassoughtarrdfouncl

first vrith no thought given to its application to practicaL situations' rt was

rediscovered and recognized as important only in the rnidst of the developrnent of

the applied field of mathematical programnring' This' in turn' had a beneficial

effect.Wi.ththeimpetusofevidentappLicability,themathematicalstnrcture

of the subjects neighbori-ng mathematical programning has deepened in the Last

quartercentury.Ascatteringofisolatedresultsonlinearinequalitieshas

been replaced' by a respectable area of pure mathematics to which this slmnposium

bears l,ritness' Notable achievenents have been recorded in the subjects of

eonvex analysis, the analysis of nonlinear systems' ald- algorithms to solve

optinlzation problems' This has been possible only because corunulication has

beer opened between mathematiciaris and the potential areas of application' to

the benefit of both' The historical record is clear and I belleve that the

moraliSequallyclear:thelinesofcornrm:nicationbetweenapplied-fielclssuch

as matbematical progra'nrning ald the praetitioners of classical branches of

mathematicsshouldbebroadenedalld-notnarrowed-byspecialization.This

syroposi-wL is a constmctive step ilt this directj-on'

APPS{DIX

The prrpose of this appendix is to place in print the precise results

obtained by Karush ln his pioneering work [2]' With the exception of sorne

preli:uinary resultsonlinear inequalities' complete statements are given for all

of the theorems and corollaries' No proofs are included since these are now

readily available in the literature or are easy to reconstruct' The notation of

the original has been conserwedl in particular) the convention that a repeated'

subscript ind'icates summation is followed' The titles of the sections' the

statementsofresults,andthereferencesareunchangedlsomecorurectingterb

has been
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has been freely rend_ered.

1. Iqtroduction

This paper treats the problem of deternini.ng necessary and. sufficient
conditj-ons for a relative ninj_num of a functi_on f(x) subject to So(x) 2 O

for " = (*.r...rx*) and 0 = 1,...,m, where the f\rnction. -1. _ _ . r_-, wnere tne tl.mctions f and go are

required- to have continuous derivatives of ord.er one or two. Blr a well_knovm

argument, we may restrict our attention to mini_nizing points xo where
/o,8o(x / = o for all q. Differentiability assumptions on f and gcv near *o

are as folloris: cl4ss c' for Theorem r-r, sections J a.nd- 4; class c,, for the
other theorems of Section l, Sections 5 and 6.

The resurts of Bliss [20] for minirrizing f(*) subject to equations

ho(x) = o for cy = 1r...,m are used, in the proofs. They are risted here for
comparison with the results of this paper.

TlIEoRrlv{ 1:1. A first necessary condition for r(*o) to be a rainimrm is
that'Lhere exist constants nor na not all zero such that the d.erivatives H*.

of the f\:_nctlon

H- 0of * loho
all vanish at *o-

r'EMI'4A 1:1' rf 1lrro*. (xo)li has ranr< m, then for every set of constants

li (i = L,2,...,n) 
".tilry:.ng the equations

rro*. (xo)1, = o

there exists a curve x. (t) having lo.rtirrro'u" second. derivatives near t = 0r

satisfying the equations tro[x(t)] = O, and such that

x.(o) = 1.o, xr'(o) = q..
TIIE.R*, t:2. If 11no*. {"o)ll has ran_h m and f(*o) is a minimr:m then

the condition

H (xo)r1 .tk: O*i\'
nust hold. for every set rli satisfying ho*. (xo)la = O, where

'f
rs the f\rrlctlon formed with the wrique set of multipliers lo =

H= f + n hgd.

L. n. 
CT,

belonging to ,o.

Our final excerpt from Bliss's paper is a suffici_ency theorem.
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TIIEOR${ 1:3. rf a point *o has a set of multipliers !o= L' lo for

which the f\rnction Jt = f + lCIhc satisfies the conditi-ons
,o.

H*. (xo) = o, n*r\t* )rlirlk > u

for all. sets li "tti"tylttg 
the equatlons

ho*. (xo)tt, = o,

then r(*o) is a minimurn

2' Preliminary theorems on linear inequalities

This section contains properties of systems of linear lnequali-ties that are

used- for the proofs in the iater sections' These includ-e Farkas' Le$na [30]'

various results from Dines ard Mccoy [31]' ald Diires 132]'

3' Necessary conditions involving only first deri-vatives

we nrake some preLin-inary definitions. A solution tr = (Irrlor " ' 'tr.) 
of

eo*. {*o)}, ? o (a = r'2'"'n) '

will be called an aa-nissitie direction if tr is not the zero vector' A

regular arc xr(t) (L = L'2" " :ni o S t f to)' vlll be called- adn'lssibre in

case CCI[x(t)] > O for every d' and t' A point "o 
is a normal point in

case the matrix

llqr*.("o)ll

has ranh ro'

TIlEgRIlil 3:1' If f(xo) is a ninirmrm then there exist multlpliers Xo' Xo

not all zero such that the derivatives t*' of the f\rnction

r(x)=lof(x)+ !oe,o(x\

a1l vanish at *o'

TtmoREM3:2.supposethatforeachadrnissibledirectiontrthereisan

ad.missible arc issuing from to in the direction I' Then a first necessary

cond-itionforr(*o)tobeaninjmumisthatthereexistrnrltipliersxolo

such that the derivatives F*. of the frurction

T=f+!,s,-.

a].l vanish at 
"o'
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The condition that there exist rrurtipliers xct S a satisfying the

concluslon of Theorem 3:2 w-ill be referred. to as "the first necessarycond.itj-on,!.

For brevity, the property that for each admi ssible d.irection l there is an

admi ssible arc issuing from *o in the direction 
^ 

w-il1 be carl_ecl property e.

coRoLr,ARY. suppose that for every adn-issible direction I 1t is tn:e that
eo*. ("o)tr, = o in1llies that cdx.a(*o)Iitrx > 0. Then if r(xo) = nrini_mum

the first necessary condition is satisfied..

TIIEOREM l:1. suppose there exists an ad-nrissibre d,irection tr for r,rhich

8o"-. (x")tr. > O for every Cy. Then if f(xo) = rnini:mrm the first necessary

"or,Lrro.r is satisfied.

COROLLARY. Suppose m = n and d.eterminant llso*. (*o) ll / O. Then a

necessary condition for f(*o) to be a nini:mrm is ttrai

t*. (xo)c. :' o (a = L,2,. . . ,n) ,

where llGicyll is the ,,,,r"1"" *utli* or llso". (*o)11.

rt is easy to give an exarnpre in vhich inu *"rron" g(x satisfy neither
the hypothesis of the corolrary to Theorem l:2 nor the hypothesis of rheorem J:1,
but in 'rhich the hypothesis of Theorem J:2 is satisfled. Let

er(x,r) = *2"* (y-r)2-t > o

sr(x,v) = l+ - ;x2+(y-e)2i 2 o

/\2g3\xry/=Y +x>O

deterrnlne the class of points (*ry) r:lder eonsideration. At (o,o) ve have

ll* *ll lli It
The only admissible d_irection is (a,O) witfr a ) O. fhere is no solution of
so*(oro)I, + eqy(o,o) fr t o for atr q. Arso srro(o,o)a2 < o so that the
hypothesis of the corollary to Theorem j:2 is not satisfied- Hmrorror i1- io
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\. Suffj-cient cond'itions involving only first derivatives

THEORE*' ,*:r. suppose * J n and llso*- ("o)11 has maxi:mm rank n' rf

is a point satisfying so(xo) = o for vhich there exist ruultipliers not o

such that F = f + L^E^ has l- (xo) = o' then r(*o) is a ninimr-rm'
o"CI ^i .. , o.r

COROIJ,ARY.Supposem=nanddeterrninaritllso*.(*")ll/o.Welet

llcicxll be the inverse matrix of lleo*.ll ' rr *o is a point satisfying

r (xo) = o such thatbcx''- 
r*. (xo)cro > o (a = T'2'"''n) '

then f (xo) is a rn-ininir:m'

Ttsonnlt 4:2. suppose t ? n arid llso*- ("o)11

point satisfvilg eo(xo) = o such that 

.'*ri"o'o'
direction 

^, 
then f1*o) is a ninjmum

5' A necessary condltion involvilg second derivatives

TIIBOIImI 
':1. 

Suppose r(*o) is a minirrum and there exist rnrltipliers no

such thaL , = 9 t xo;o has R*. (xo) = o' suppose, f\rther' that lle..r*. (*")11

has rank r ( n with the first r rows linearly independent' Then fotttt"r'y

adrrissible direction q satisfying q"*. (*o)l' = o (a = I'2" " 'm) ' such that

there is an adrnissibr_e arc x(t) of class c" issuing from *o in the

direction I arid satisfyi-ng eo[x(t)l = o for a = LtZ>" ' 'T' it is true that

u 1*o)r.1,- ) o,
VYIA_

1K

F is formed- I^rith the unique set of nultipliers xo belonging to the

r rows of lleo". ("o) ll '

COROLLARY. Suppose *o is a nornial point' Then necessary cond'ltions for

to be a rrt-ixjltrurn arc that the first necessary condition be satisfied' a3d

, o\l' (x )rl. l,- a u

AK

besatisfiedforeveryadmissibledirectionlsatlsfying
eox (xo)lt = o (a = L'2" ..'m) '

6' A sufficiency theorern involvj-ng second deriv?tives

THE0RI$4 5:I' If a point *o satisfying So(*o) = o has a set of

nnrltipliers Xo t u for whlch the f\rnction F = f * !o8o satisfies

for al1

has ranh n. If "o i-s a

> O for everY admissible
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F* (xo) = o, r*.* (xo)nrr,n t o
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for all admissible directions 1 satisfying
. o,

8o*. (x- ) l, = o'
a

then r(*o) is a minj:nu-rn.
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