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Materials with structural hierarchy 
Roderic Lakes 

Many natural and man-made materials exhibit structure on more than one length scale; in some 
materials, the structural elements themselves have structure. This structural hierarchy can play a 
large part in determining the bulk material properties. Understanding the effects of hierarchical 
structure can guide the synthesis of new materials with physical properties that are tailored for 
specific applications. 

HIERARCHICAL solids contain structural elements which them­
selves have structure. The hierarchical order of a structure or a 
material may be defined as the number ( n) of levels of scale 
with recognized structure. For n = 0, the material is viewed as 
a continuum for the purpose of analysis of physical properties; 
n = 1 (first-order) could represent a latticework of continuous 
ribs or the atomic lattice of a crystal. Hierarchical structure can 
arise in natural and in man-made materials. In the latter the 
structural hierarchy may be intentional or unintentional. The 
simplest conceptualization of hierarchical structure is descrip­
tive: to recognize that structural features occur on different size 
scales. At the next level of sophistication, the idea of hierarchical 
structure can be used in analysis to determine physical properties 
of the material or the structure. At each level of the structural 
hierarchy, one may model the material as a continuum for the 
purpose of analysis, although strictly speaking such an assump­
tion is warranted only if the structure size at each level of the 
hierarchy is very different. Finally, the idea of hierarchical 
structure can be the basis for synthesizing new microstructures 
which give rise to enhanced or useful physical properties. 
Benefits can include improved strength and toughness, or 
unusual physical properties such as a negative Poisson's ratio. 
These structures are considered to be fractal-like 1, but they are 
not true fractals as n remains finite and the solid volume fraction 
does not go to zero even for large n. 

The idea of macroscopic hierarchical frameworks can be 
traced back at least to Eiffel's design for his tower2 (Fig. 1) and 
to bridges such as the Garabit viaduct. The Eiffel tower is 
third-order, and has a relative density p / p0 (density p as mass 
per unit volume of the structure divided by density p0 of material 
of which it is made) just 1.2 x 10~3 times that of iron2 (which is 
weaker than structural steel). The rationale for the use of small 
girders in such a large structure was attributed to ease of con­
struction3, although it had also been suggested by Mandelbrot1 

that Eiffel perceived a structural advantage. For comparison, 
the World Trade Center (New York) and the Pompidou Centre 
(Paris), both first-order, contain a volume fraction of structural 
steel4 p/ p0 = 5.7 x 10~3 . The World Trade Center contains steel 
with a yield strain eY of 0.0033, 2-3 times as strong as 'mild' 
structural steel. 

A more recent example is a proposal by Dyson5 to construct 
hierarchical frameworks in outer space. Dyson presented scaling 
arguments to the effect that very large structures could be con­
structed with low mass. Stress analysis of elastic buckling in 
hierarchical truss structures was to come later6.7. In modern 
structural engineering, however, the tendency seems to be away 
from hierarchical structures; although these contain less material 
to achieve a desired strength, the costs associated with fabrica­
tion and maintenance currently exceed any saving in material 
cost. 

Dense hierarchical materials 
Composites and polycrystals. Practical fibrous composites com­
monly have a low order of hierarchical structure in which fibres 
are embedded in a matrix to form an anisotropic sheet or lamina; 
such laminae are bonded together to form a laminate (Fig. 2a). 
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In the analysis of fibrous 8
-

10 composites, the fibres and matrix 
are regarded as continuous media when one is analysing the 
lamina; the laminae are then regarded as continuous in the 
analysis of the laminate. The stacking sequence of laminae and 
the orientation of fibres within them governs the anisotropy of 
the composite. A similar continuum assumption is used in the 
analysis of particulate composites 11 and of foams 12

• Inorganic 
crystalline materials have a 'hierarchy' of structural features 13 

such as grain boundaries between crystals of sizes ranging from 
millimetres down to micrometres, dislocations, and point defects 
such as vacancies on the atomic scale. These structural features 
give rise to viscoelastic behaviour14'15 manifested as attenuation 
of stress waves or damping of vibration at different frequencies. 
Polycrystalline materials can now be synthesized with a distribu­
tion of grain sizes less than 1 f.Lm (nanocrystalline materials) 16-19. 
The small grain size, and hence large interface area, gives rise 
to desirable properties such as superplasticity (in which large 
irreversible deformation can occur without fracture), and 
improved strength and toughness. Small grain size also implies 
short diffusion distances, allowing processes that depend on 
diffusion, such as sintering, to occur at lower temperatures than 
would otherwise be possible. 

Hierarchical laminate structures have been analysed theoreti­
cally to approximate the stiffness ofpolycrystalline aggregates20, 
and for exploring bounds on the electrical conductivity of poly-

FIG. 1 Hierarchical structure in the Eiffel tower, after Loyrette2
. Inset: detail 

of leg. 
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crystals21 ·22 and the elastic stiffness of polycrystals23 and com­
posites24. In these laminates, each lamina is composed of further 
laminae (Fig. 2b ). For elastically isotropic hierarchical lami­
nates, it is possible to attain24 the theoretical upper or lower 
bounds25 on the stiffness. These laminates are considered to be 
a mathematical tool rather than practical composites because 
widely differing length scales must be chosen to justify the 
assumption that each level is a continuum23

. Negative Poisson's 
ratios, which imply that the material becomes fatter in cross­
section when stretched, are predicted in hierarchicallaminates26 

with a chevron structure (Fig. 3a ). The physical mechanism for 
the unusual Poisson effect is illustrated by the hinged framework 
which unfolds under tension (Fig. 3b ). One can achieve, with 
these laminates, Poisson's ratio values approaching the lower 
limit of -1 for mechanically isotropic materials. 
Polymers. Polymers can exhibit structural hierarchy on the 
molecular, ultrastructural and microstructurallevels27

• In crys­
talline polymers, there are spherulites on the scale of tens of 
micrometres, the spherulites themselves contain a lamellar tex­
ture and the molecules within the lamellae contain structure. 
Amorphous polymers have structure on the molecular scale 
only27

• When they are irreversibly deformed, however, crazing 
occurs and the process can be understood with the aid of a 
hierarchical approach which can deal with the multiple size 
scales involved. Crazes are bridged by nanoscale microfibrils 
whose properties are important. At the macroscale the crazed 
material can be considered as a composite. In covalent amor­
phous solids, the concept of hierarchical order has been used 
to aid the classification of order28 into short-range (2-5 A), 
medium-range (5-20 A) and long-range (~20 A). 
Biological materials. Human compact bone is a natural com­
posite which exhibits a rich hierarchical structure29·30 (Fig. 4). 
On the microstructural level are the osteons31 , which are large 
(200 j.l.m diameter) hollow fibres composed of concentric lamel­
lae and of pores. The lamellae are built of fibres, and the fibres 
contain fibrils. At the ultrastructural level (nanoscale) the fibres 
are a composite of the mineral hydroxyapatite and the protein 
collagen. These specific structural features have been associated 
with various physical properties. For example, the stiffness32 of 
bone arises from the composite structure of mineral microcrys­
tals and protein (principally collagen) fibres. Slow creep33 results 
from slip at cement lines between osteons. The cement lines as 
weak interfaces impart a degree of toughness34 to bone. As for 
pores, the lacunae are ellipsoidal pores which provide space for 
the osteocytes, the living cells of bone. The bone cells at this 

b 

FIG. 2 a, Hierarchical structure of order two in a practical fibrous laminate. 
Parallel fibres form a lamina; laminae of different orientations are stacked 
to form a laminate with specified anisotropy. b, Hierarchical laminate. adapted 
from Milton23

; order three shown. Each lamina contains a sublaminate. These 
laminates are used in mathematical demonstrations of attainable material 
properties in composities. 
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level of scale permit bone tissue to remodel its structure in 
response to prevailing stresses30. Haversian canals are cylindrical 
pores containing blood vessels which nourish the tissue. 
Canaliculi are fine channels radiating from the lacunae. 
Mechanical stress due to physical activity is considered to be 
important in pumping nutrients through these channels35 . The 
pore structure of bone is essential in maintaining its viability 
and consequently its ability to adapt to mechanical stress. A 
two-level hierarchical analytical model36 has been used to pre­
dict its anisotropic elasticity; it successfully modelled how bone 
stiffness depends on the orientation of applied stress with respect 
to the osteon axis. 

Other examples of natural hierarchical materials include 
wood37·38 , tendon 27

, trabecular (spongy) bone and bamboo. Of 
these, only tendon may be regarded as 'dense'; the others are 
cellular. Tendon consists of collagen which on a molecular scale 
is similar to that of bone27

• The triple helical collagen 
macromolecule is formed as a result of the amino acid glycine 
occupying every third unit. The strongest intermolecular attrac­
tions occur when neighbouring molecules are shifted by 67 nm, 
the 'stagger' which is responsible for the banded appearance of 
collagen observed by electron microscopy. Assembly of 
subfibrils into fibrils is thought to be controlled at least in part 
by the primary structure of collagen. In tendon, the collagen 
forms fibres which are organized into mostly parallel fibre 
bundles of progressively larger size. The larger-scale organiz­
ation is attributed to interaction with noncollagenous com­
ponents such as proteoglycan matrix. The fibres are not perfectly 
aligned; they form a wavy or crimped structure which confers 
on the tendon an initial compliance as the fibres straighten under 
load. The damage processes that governs the strength and tough­
ness of tendon involve structural elements over the full hier­
archical range of sizes. 

Role of the largest structural elements 
Structure may be present on many size scales, but the largest 
structural elements often have a unique role. If the largest 
structure is not negligible in size compared with the object itself 
or a crack or hole in the object, the classical continuum view 
may no longer describe the situation adequately. When defor­
med elastically, objects with large structural elements may 
exhibit size effects in bending and torsion39

: 'classically', the 
rigidity of rods in bending or torsion should be proportional to 
the fourth power of the diameter, but slender rods can be stiffer 
than this. Moreover the stress concentration predicted in 
classical elastic solids near holes and notches is alleviated in 
some materials with microstructure39. This is beneficial in struc­
tural materials. In some foams, incomplete cells near a cut 
surface contribute to the volume but not to the stiffness or 
strength40 so that small objects are less stiff than expected from 
classical continuum analysis (the converse of the slender rods). 
In hierarchical composites, the largest structural elements such 
as fibres 41 "42 or particulate heterogeneities43 seem to govern the 
fracture toughness and the localization of microdamage. 
Classical elasticity theory has no length scale associated with 
it. More general continuum theories such as Cosserat (micro­
polar) elasticit/4

•
45 allow rotation of points in the continuum 

as well as translation, and contain characteristic lengths as well 
as stiffnesses among the material constants. Physically the addi­
tional freedom in the continuum corresponds to twisting or 
bending motions in the fibres or ribs in the material microstruc­
ture. Generalized continuum theories offer predictive power in 
dealing with nonclassical phenomena39-43, and may be of use 
in future analysis of hierarchical materials in which one relaxes 
the assumption that the structure size at each hierarchical level 
is very different. 

Hierarchical cellular materials 
Cellular solids. Cellular solids are composites in which one phase 
is solid and the other is empty space, or possibly a fluid. Natural 
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examples are rocks, wood and bone. Porous rocks can have a 
wide range of pore sizes46

, but the structure is not as highly 
organized as that of wood and bone. Wood contains elongated 
pores (called tracheids or fibres) oriented along the tree or limb 
axis, radial channels called rays, and larger sap channels12

•
47

. 

The cell walls are themselves fibrous and consist of oriented 
cellulose in a hemicellulose and lignin matrix. The alignment 
of the tracheids is favourable for resisting the prevailing forces 
in the tree 12

. Trabecular bone has a spongy structure. The struts 
or ribs in trabecular bone have a complex internal structure 
(Fig. 4) similar to that of the osteon in compact bone. 

Synthetic cellular materials are used for applications such 
as cushioning, filtration, insulation and lightweight sandwich 
cores. They tend to have either a two-dimensional or a three­
dimensional structure (honeycombs and foams respectively). In 
most synthetic cellular solids, there is only one size scale other 
than the atomic: that of the cells. Some synthetic open-cell 
polymer foams can have an unintentional further hierarchical 
structure, however, in that the ribs may contain 'microcells'48

• 

Aerogels are gels in which the fluid phase is air rather than 
:;olvent; they have submicroscopic pores with a wide range of 
sizes organized in a hierarchical structure49

•
50

. The microstruc­
ture depends on density, and the Young's modulus varies as 
p 3

·
8

• Foams with negative Poisson's ratio51 have an inverted 
(re-entrant) cell shape in which the cell ribs bulge inward rather 
than outward. Although they are not hierarchical in themselves, 
they may be used to make hierarchical composites in which the 
open space in the cells is filled with a compliant solid or with 
a foam of smaller cell size. If the filler is viscoelastic, the 
composite's viscoelastic response can be made large when the 
filler experiences a larger local strain than does the composite. 
By choosing the relaxation rates of the large-cell foam and the 
filler, it is possible to design materials in which Poisson's ratio 
increases or decreases52 with time. 

The first quantitative analysis of open hierarchical structures 
is that of Parkhouse6

, who even proposed a competition for the 
most structurally efficient hierarchical design. Parkhouse con-

FIG. 3 a, Negative Poisson's ratio laminate of Milton26
. b, Rod-and-hinge 

frame structure to illustrate the mechanics of the laminate in achieving a 
negative Poisson's ratio. 
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TABLE 1 Parameters in equations (1) and (3) 

Stiffness Strength 

Eq. (1) Eqs. (1, 3) Eq. (3) Eq. (3) 

Microstructure 

Foam, open cell, ribs bend12 

Elastic buckling 

Exponent r Multiplier k Exponent q Multiplier a 

2 

Plastic buckling 

Honeycomb (out of planef2 

(Cell walls compress axially) 1 

Elastic buckling 

Plastic buckling 

Brittle crushing 

Ductile crushing 

Frame (ribs deform axially) 
Elastic buckling 

oriented 

cubic9 

isotropic
9 

1 
1 

1 

1 
1 
1 

1 
1 
1 
1 
1 

1 
1/3 
1/6 

2 0.05 
3/2 0.3Ey,solid 

3 5.2 
5/3 5.6Ey.so!id 

1 12 E ult,so!id 

1 Ey,solid 

2 0.05 
2 0.05 
2 0.05 

sidered lattice, truss, honeycomb and tubular geometries, and 
showed that hierarchical structure can be used in the design of 
structural elements which, for a given compressive strength, are 
much lighter than elements with simple structure. The effect of 
damage on reliability in homogeneous solids, in structures with 
one scale size and in those with hierarchical structure were 
described 53 in connection with continuum models of structures. 
Ashbl4 has elucidated the freedom that a designer of load­
bearing components has in choosing material properties, section 
shape, and with cellular and composite materials, microstruc­
tural degrees of freedom. 
Prediction of strength and stiffness. In cellular materials, the 
stiffness depends on density and on the structure. In many such 
materials, which ordinarily have structure only on the scale of 
the cells, the relationships are simple. The Young's modulus 
(stiffness) E of a cellular material such as a foam or honeycomb 
(considered as a continuum) is given in terms of the Young's 
modulus E0 of the solid from which the material is made, the 
density p0 of the solid phase and the density p of the foam 12

• 

The atomic structure is ignored here because it is absorbed in 
the continuum description of the cell ribs. 

(1) 

The values of k and r depend on the type of structure (Table 
1). In this section, stiffness and strength in hierarchical cellular 
solids is predicted for 'conventional' (not re-entrant) materials: 
honeycombs with hexagonal cells and for open-cell foams with 
convex (usually tetrakaidecahedral) cells. Simple continuum 
models now available for cellular solids 12 aid the analysis. 
Hierarchical cellular solids are considered in which the material 
making up the cell ribs is also cellular and has a smaller cell 
size. For a solid material viewed as a continuum, the hierarchical 
order n = 0; for a conventional foam or honeycomb, n = 1; and 
for a sponge with porous ribs, n = 2. Hierarchical solids may 
be envisaged with any hierarchical order, with an upper bound 
on n determined by the fact that the smallest cells must be of 
larger size than atomic dimensions. 

To predict the properties of hierarchical cellular solids, one 
can iterate the stiffness equation (1), considering the solid 
density to be p0 at zeroth order. Strictly, the classical continuum 
view used here is valid only if the size of the structure making 
up each cell wall or rib is much smaller than the rib itself. 

(2) 

On this basis, we see that for honeycombs deformed out of 
plane and for foams (k = 1), the hierarchical order n does not 
influence the stiffness, whereas for framework-type structures 
for which k < 1 the stiffness decreases with n. The relationships 
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FIG. 4 Hierarchical structur-e 
in human compact bone; 
individual size scales adap­
ted from refs 28-31. 
Fibrous, laminar, particulate 
and porous structure is 
present at different size 
scales. 

Collagen 
molecule 

1 nm 1aa nm 

for compressive strength 12 cr, or maximum stress before collapse, 
of conventional first-order materials (n = 1 for cellular material, 
n = 0 for the solid phase) can be rewritten in a general form for 
two arbitrary hierarchical orders differing by one, with n ~ 1. 
Here a and q are parameters which depend on the rib failure 
mode and material structure (see Table 1). 

(3) 

Possible failure mechanisms are elastic buckling of cell ribs in 
which the ribs reversibly collapse, plastic buckling in which the 
ribs irreversibly collapse, or crushing in which the ribs fracture. 
As shown in Table 1, the strength parameter a for plastic 
buckling depends on cy,solid, the strain at yield for the solid from 
which the material is made; for crushing, it depends on cult solid• 

the fracture strain of the solid. After some manipulation,' and 
assuming the density ratio is the same for each level, we find 
that the strength to density ratio of the hierarchical material is, 
for n ~ 1 

E ( ) r-l+(q-r)jn 
crn=___!:!_ak" Pn 
Pn Po Po 

(4) 

The upper bound on the strength-to-density ratio is that of the 
solid at the zeroth level of the hierarchy. The crush limit for 
honeycomb is independent of hierarchical order: as k = 1 and 
q = r = 1, n has no effect. 

The predicted strength-to-density ratio of honeycombs is 
shown in Fig. 5. The physical mechanism for the improved 
strength is the suppression of buckling in the hierarchical struc­
ture. Because failure can occur by elastic buckling, plastic buck­
ling or crushing, the actual strength corresponds to the lowest 
stress of the possible failure modes. For low-density honey­
combs, marked improvement in compressive strength can be 
realized in hierarchical structures. Most of the gain in strength 
occurs in the first few levels of the hierarchy; the situation for 
large n is one of diminishing returns. Moreover, the relative 
thickness of the cell walls increases with n, so for a relative 
density of 0.01, values of n above 4 are unrealistic. If the solid 
phase had a higher ultimate strain (for example cult= 0.054 for 
glass fibres; 0.08 for silica) the transition from elastic buckling 
to plastic buckling in Fig. 5 would occur at higher stress. Con­
sequently, there is a considerable advantage to using high­
strength materials in making a hierarchical honeycomb, in con­
trast to conventional honeycomb in which only the stiffness of 
the solid phase is important. 

As for foams, conventional open-cell foams deform by rib 
bending 12 for which r = 2 and k = 1 in equation (1). For such 
foams, there is no strength advantage associated with the hier-
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1 f.Lm 
Size scale 

Haversian 
osteon 

2aa f.Lm 

Cement 
line 

archical structure (Fig. 6). The situation is different for an 
oriented foam 12

•
55 such as trabecular bone of a particular struc­

ture (modelled as first-order) in which deformation proceeds 
by axial rib extension with r= 1 and k= 1 in equation (1). A 
cubic lattice of beams (k = 1/3), more representative of building 
construction than of foams, deforms axially in this way. Such 
materials and structures are predicted to have a considerable 
strength advantage associated with the hierarchical structure 
(Fig. 6). For large n, the cubic and isotropic microstructures 
perform less well, because at each level, some ribs are oriented 
so that they do not support load. 

These predictions of stiffness and strength are independent 
of scale and are relevant to large structures as well. If elastic 
buckling were the only failure mode considered (as in ref. 6), 
the saving in strength or weight of these structures would be 
overestimated. 

A different type of analysis which generates hierarchical struc­
ture is finite-element analysis in which the topology of a struc­
tural element is allowed to varl6

. In finite-element analysis, 
stress and deformation fields in an object are analysed by sub­
dividing a model of the object into many small segments, for 
each of which it is simple to compute stress. In most applications 
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FIG. 5 Strength-to-density ratio of hierarchical honeycomb increases with 
hierarchical order n. Normalized strength ratio (unl Pn)/(£0 1 p0 ), for hier­
archical honeycomb microstructure, as a function of n, for several solid 
volume fractions Pn I Po: squares, o.a1; triangles, a.0001. For the solid, the 
yield strain and fracture strain are assumed to be a.a1. Open symbols: 
elastic buckling. Solid symbols: plastic buckling. Inset: second-order honey­
comb cell. Solid curves: buckling mode with lowest stress limits the strength. 
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of the method, the boundaries of the model are not changed. 
In ref. 56, holes were deliberately introduced in the model, and 
their boundaries were progressively modified depending on the 
calculated stress at each iteration. Optimization of the structural 
element to maximize stiffness for given weight leads to a cellular 
microstructure which becomes truss-like if the solid volume 
fraction is small. The optimal microstructure under some condi­
tions is hierarchical. 

Second-order hierarchical honeycombs can easily be made 
by the techniques currently used to make practical expanded 
honeycomb. In the 'hobe' (honeycomb before expanding) block 
method, strips of material are bonded together with bands of 
adhesive so that the bonded regions of one strip lie above the 
unbonded regions of adjacent strips. To produce a honeycomb, 
the width of glued and unglued sections is made equal. The 
stack of strips is pulled apart so that the web between the bonded 
strips forms the cell walls. I have used a modified hobe-block 
approach to make hierarchical honeycomb by stacking unexpan­
ded small cell layers and using wide glue strips between them 
to make large cells with small cells in the walls. I also constructed 
hierarchical honeycomb by cementing together segments of first­
order honeycomb to form a larger honeycomb. Experiments 
using a servohydraulic test machine to crush the specimens 
showed that second-order paper honeycomb is a factor of 3.2 
to 3.8 times stronger in compression than first-order honeycomb 
of the same density (0.01 g cm-3

). The simple theory developed 
above, assuming plastic buckling, predicts a strength enhance­
ment factor of 4.6. Given the idealizations involved, including 
identical density ratio at each order, this agreement seems rea­
sonable. Honeycomb made of a stronger material would be 
enhanced even more in strength by hierarchical structure, as the 
transition between the governing failure modes depends on the 
strength of the material used. 

Conclusions and prospects 
Many materials exhibit hierarchical structure; the hierarchical 
aspects of structure are useful for descriptive purposes, for 
analysis and for synthesis. Hierarchical cellular material micro­
structures sometimes have far higher compressive strength than 
cellular solids of similar density with conventional structure. 
Two-dimensional hierarchical cellular solids (honeycombs) are 
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FIG. 6 Strength-to-density ratio of hierarchical foam can increase with 
hierarchical order n. Normalized strength ratio (ern/ Pn)I(E0 / p0 ), for different 
types of hierarchical foam microstructure, as a function of n, for several 
volume fractions Pnl p0 . Solid is assumed to be sufficiently strong that 
failure occurs by elastic buckling. Inset: second-order foam cell, showing rib 
bend. 

easily made, and other hierarchical cellular solids could be 
manufactured by rapid prototyping systems57 in which a com­
puter-generated design is converted into complex shapes by 
photochemical, sintering, deposition, layering or sculpting tech­
niques. Amongst the useful material properties that may be 
conferred by hierarchical structure, an intriguing possibility is 
that of simultaneously achieving values of strength and tough­
ness, for which ordinarily there is a trade-off. Hierarchical 
structure can give extremal values of unusual properties such 
as negative Poisson's ratios. There is the further possibility of 
designing materials with extreme values of properties such as 
thermc.l expansion or piezoelectricity. 0 
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