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Abstract In this work, we explore simultaneous geometry
design and material selection for statically determinate
trusses by posing it as a continuous optimization problem.
The underlying principles of our approach are structural
optimization and Ashby’s procedure for material selection
from a database. For simplicity and ease of initial
implementation, only static loads are considered in this
work with the intent of maximum stiffness, minimum
weight/cost, and safety against failure. Safety of tensile and
compression members in the truss is treated differently to
prevent yield and buckling failures, respectively. Geometry
variables such as lengths and orientations of members are
taken to be the design variables in an assumed layout.
Areas of cross-section of the members are determined to
satisfy the failure constraints in each member. Along the
lines of Ashby’s material indices, a new design index is
derived for trusses. The design index helps in choosing the
most suitable material for any geometry of the truss. Using
the design index, both the design space and the material
database are searched simultaneously using gradient-based
optimization algorithms. The important feature of our
approach is that the formulated optimization problem is
continuous, although the material selection from a database
is an inherently discrete problem. A few illustrative
examples are included. It is observed that the method is
capable of determining the optimal topology in addition to
optimal geometry when the assumed layout contains more
links than are necessary for optimality.
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List of symbols

E Young’s modulus
L length of a truss member
ρ mass density
M material index
m mass
P internal force in a truss member
A cross-section area of a truss member
St tensile failure strength
y composite geometry and function index
D design index=ratio of ys for compressive

and tensile members
SE strain energy
K global stiffness matrix
s smoothening parameter
x geometric design variable
u displacement vector
F external force vector
P internal force vector consisting of internal

forces of all members
θ angle of inclination of a member
R rotation matrix of a member in the truss structure
Nn total number of nodes (vertices) in a truss
Ne total number of members in a truss

List of subscripts

i ith member
t tensile (member or load)
c compressive (member or load)
i1 first node in ith member
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i2 second node in ith member
l local coordinate system
g global coordinate system

1 Introduction

Design of structures entails choosing the best material(s)
and determining the optimal geometry. Structural designers
either assume a material before optimizing the geometry or
select the best material for an existing geometry of a
structure. Either approach does not guarantee the optimal
combination of geometry and material. Therefore, designers
ought to consider geometry optimization and material
selection simultaneously. However, this issue has been
rarely addressed in the literature. In this paper, we present a
framework for simultaneously optimizing the geometry and
choosing the best material for statically determinate truss
structures. This is a first step towards the development of a
general method for a variety of structures. The novelty of
our formulation is posing the inherently discrete problem of
material selection as a continuous optimization problem and
combining it with the geometry optimization. A brief
description of the related work follows to bring out the
differences and similarities between our approach and those
of the past.

Size, shape, and topology optimization procedures are the
three classes of extensively studied structural design meth-
odologies with known or assumed material (Haftka and
Gurdal 1994; Bendsoe and Sigmund 2003; Ananthasuresh
2003). The topology optimization methods have also been
used to determine a microstructure for desired material
properties by Sigmund (1994), Gibiansky and Sigmund
(2000), and others. Simultaneous determination of the
microstructure of the material, as well as the topology of
a structure, has also been pursued (Turteltaub 2002;
Bendsoe et al. 1994; Rodrigues et al. 2002; Guedes et al.
2005). In these methods, in addition to the topology
variables, the parameters in the constitutive stress–strain
relationship are taken as the design variables in the
optimization problem. They have the advantage that
different optimal material properties at each point in the
optimized topology are determined. But they also have the
disadvantage that a material with such optimized properties
may or may not exist in reality. Furthermore, having
different microstructures for different parts of the structure
(i.e., inhomogeneous material distribution) is neither prac-
tical nor economical with the current state of manufacturing.
Some practically viable methods have been proposed to
choose the optimal orientation of lay-ups in different layers of
composite shells by Stegmann and Lund (2005). Alternative-
ly, when it is possible to justify the increased cost of

manufacturing, modern layered manufacturing methods may
be used to realize optimal geometries with optimized
inhomogeneous material microstructure (Dutta et al. 2001).

In the present work, we have neither defined a
microstructure nor formed a constitutive material property
relationship that is optimized. Instead, we choose from
existing database of materials using Ashby’s approach of
material indices. Ashby’s approach, as described in his
book (Ashby 1999), helps choose the most suitable material
when the geometry and loading of a component are known.
To facilitate simultaneous optimization of the geometry and
material selection, a design index was introduced by
Ananthasuresh and Ashby (2003) in such a way that there
exists a best material in the material database for every
value of the design index. The design index depends on the
geometry and functional requirements and, thus, serves as
the coupling parameter in the simultaneous search of
geometry and material spaces.

The design of statically determinate trusses is considered
in this work to develop a framework for combining
geometry optimization with the selection of the best
material from a database. We use stiffness, strength, and
cost/weight as the criteria for truss design.

Optimal design of trusses is a widely researched topic
(Rozvany et al. 1995). The ground structure approach for
truss design preceded the topology optimization by at least
two decades. It is reported that the minimum weight design
of trusses subject to stress constraints was considered by
Dorn in 1964 (Achtziger 1996). Dorn had assumed that the
allowable stresses in tensile and compression members are
equal and showed that it can be posed as a linear
programming problem. Achtziger (1996) proved that this
can be done even when the two allowable stresses are
different. Dorn, Achtziger (1996), Rozvany and Birker
(1994), and others used the areas of cross-sections as the
design variables. Recently, Stolpe and Svanberg (2004)
included additional variables to select a different suitable
material for each truss member from among a finite number
of materials. They proved that at most two materials are
sufficient in an optimal truss. They considered strength
considerations as constraints in the optimization problem.
Furthermore, they used yield stress as the limit even for
compression members. But most often, slender compres-
sion members fail by buckling before their yield under
compression occurs. Therefore, in this work, we consider
buckling failure for compression members and yield failure
for tensile members. An additional difference is that we do
not pose the strength considerations as constraints but use
them directly to determine the areas of cross-section. Thus,
the design variables in the optimization problem are lengths
and orientations (i.e., the geometry variables) of the truss
members in an assumed layout. Achtziger (2005) has also
solved the ground structure problem using geometry-
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defining parameters as design variables. But in addition to
these, he has taken the areas of cross-section as the design
variables; that is not so in our case as mentioned above.

A few more points need to be noted about the approach
taken in this paper. From the viewpoint of economical
manufacturing and to avoid problems (e.g., galvanic
corrosion) associated with two-material trusses, we insist
on choosing a single best material for the optimal truss
rather than two. Thus, this work differs from that of Stolpe
and Svanberg (2004) who also considered material selec-
tion based on stress constraints. As stated earlier, we
consider only available real materials in a database.
Furthermore, although our approach does not explicitly
address topology optimization, when some areas of cross-
section go to the lower limit of zero (a small positive value
in practice), the optimal topology may be different from the
assumed initial layout.

The remaining four sections of this paper contain the
following: a description of the design index and how it can
be used to select the best material(s); the procedure for
designing the geometry in conjunction with material
selection; results, discussion, and possible future exten-
sions; and finally, the concluding remarks.

2 Selecting materials based on a design index

Our method of simultaneously designing the geometry and
selecting the material, as noted above, is an extension of
Ashby’s method of material selection (Ashby 1999). In
Ashby’s method, when the objective f can be expressed as a
separable function of functional requirements F, geometry
G, and material properties M (i.e., f ¼ fF Fð ÞfG Gð ÞfM Mð Þ is
possible); then, fM(M) is called a material index. This index
helps choose the best material(s) from a database for the
given fF(F) and fG(G). Instead of the above separable form,
when f has the following form, the best material is chosen
as described next.

f ¼ D F;Gð Þm1 Mð Þ þ m2 Mð Þ ð1Þ
For the purpose of illustration, Fig. 1 schematically

shows an Ashby’s material selection chart with nine
materials {M1...M9} for two material indices m1 and m2

on a log–log scale. A log–log scale is preferred in this chart
because properties of all available materials differ by

several orders of magnitude. The major and minor axes of
the ovals in the figure indicate the range of values of the
respective material indices of the corresponding materials.
The figure also shows constant f curves for four different
values of f={f1, f2, f3, f4} for a chosen value of D(F, G)
based on (1). Because f is constant along the curve, all the
materials whose ovals overlap with it are equally good.
Fixing the value of D(F, G) implies that the geometry and
functional requirements remain constant. Now, from the
chart, we can see that the best available material(s) that
minimize(s) the objective function f are M3 and M7 with a
value of f3. There are no materials with a lower value of f in
this example. Thus, for each D(F, G), there exist one or
more best materials. If we think of D(F, G) as a design
index (Ananthasuresh and Ashby 2003), which entirely
depends on the geometry for given functional requirements,
we are, thus, able to select the best material for that design.

When the value of D(F, G) changes, the shape of the
constant f curve changes. Consequently, the best material(s)
choice for minimum f would also change. By repeating the
above procedure for different numerical values of D(F, G),
we can get the best material(s) for a desired range of D(F,
G). This is shown in Fig. 2. As can be seen in the figure, the
choice of the best material usually remains the same for a
finite range of values of D(F, G). As noted above, for some
range(s) of D(F, G), more than one material may emerge as
the best material. In those cases, it is immaterial which one
of those is selected because they all give the same optimum
value of the objective, f. We have used Cambridge
Engineering Selector (CES, Cambridge Engineering Selector
software, Granta design 2006, Cambridge, UK; http://www.
ces.com) to cover the entire range of D(F, G), i.e., [0,∞).

Based on the above approach of choosing the best
material as a function of the design index, we formulate an
optimization problem for simultaneously determining ge-
ometry and material for trusses. For this purpose, in the
next section, we present the weight/cost objective with the
strength requirement in truss design as shown in (1).

3 Functional requirements and design index for truss
design

Every member in a truss experiences either tension or
compression. The members under tension will fail by
yielding, while those under compression are most likely to
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Fig. 1 Material selection
chart for two material indices,
m1 and m2, for a given value
of D(F, G) as per (1)
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fail by buckling. In general, one best material exists for
tension members and another for compression members.
This intuitive observation was rigorously proved by Stolpe
and Svanberg (2004). As noted earlier, we favor a single-
material truss for reasons of economy, ease of manufactur-
ing and assembly, and durability. Keeping this in mind, we
present a design index next.

Let St be the permissible strength for a tensile member.
Then, the area of cross-section At for a tensile member can
be written as

At ¼ Pt=St ; ð2Þ

where Pt is the tension in the member. For compression
members, buckling being the considered mode of failure,
the area of cross-section for pin-ended truss members can
be written for critical Euler buckling as follows:

Ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
φL2cPc

π2E

r
; ð3Þ

where Lc is the length of the member, Pc the compressive
load, E the Young’s modulus, and φ the shape factor
(Ashby 1999). For simplicity, we have considered a square
cross-section for all truss members in our analysis. The
mass of the whole truss can now be written as follows:

m¼
XNc

i¼1

ρAili þ
XNt

i¼1

ρAili

¼
XNc

i¼1

Ljc
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 Pjc

�� ��q( )
ρ

E1=2
þ

XNt

i¼1

PtiLtið Þ
( )

ρ

St

) m¼ ycf g ρ

E1=2
þ y tf g ρ

St

; ð4Þ

where Nt and Nc are the number of members in tension and
compression, respectively, and ρ, the mass density. For
selecting the material to minimize the mass without loss of
generality, (4) can be recast as (1).

em ¼ yc

y t

r

E1=2
þ r

St
¼ Dm1 þ m2 ; ð5Þ

where m1 ¼ ρ=St and m2 ¼ ρ
�
E1=2 are material indices,

and D ¼ yc=y t is the design index. Note that D is non-
negative. Note also that (5) has the same form as (1).

The minimum weight objective is likely to give
expensive or impractical materials to build trusses. There-
fore, we consider the cost of material instead of weight as
the objective. Then, the two material indices in (5) should
be multiplied by the cost per unit mass of material. This is
indicated as “price×material index” in the material selec-

tion charts of Figs. 3 and 4 with the objective of the cost of
material shown below:

cost ¼ D price� m1ð Þ þ price� m2ð Þ: ð6Þ

The material selection chart in Fig. 3 was generated using
the material database of only metals in the CES software
(Cambridge Engineering Selector software, Granta design
2006, Cambridge, UK; http://www.ces.com; Ananthasuresh
and Ashby 2003) and is reproduced in this study. Thus, Fig. 3
shows “price×ρ/St” against “price×ρ/E

0.5” for only metals. In
Fig. 3, the constant cost curves are shown for D=0.01, 1, and
100. Low alloy steels are the best choice until D=1. Cast iron
dominates for values larger than one. This is expected
because large values of D indicate that more numbers are
under compression or that the compression loads are higher
for both, of which cast iron is better than steel.

By creating another chart similar to the one in Fig. 3 for
all engineering materials excluding polymers, the best
choice of the material for the entire range of D was
determined as shown in Fig. 4a and b.

The figures show two relevant material properties, viz., ρ
and E, instead of indicating the name of the material as in
Fig. 2. It is important to note that low alloy steel remains
the best material for 0≤D≤∼0.075, and aerated concrete
remains as the best material for D≥∼1.4. Thus, we know
the most suitable materials for the entire range of D. After
this, we considered all polymers, and following similar
steps as for the previous set of materials, we got the best
choice of all polymer materials for the entire range of D as
shown in Fig. 5a and b. In this case, polypropylene is the
best material for 0≤D≤∼0.1, and phenol formaldehyde
remains the best material for D≥∼3.5. Thus, we know the
most suitable polymer materials for the entire range of D.
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Fig. 3 Material selection for trusses considering only metals with
price included. Low alloy steels and cast irons now emerge as the best
candidates
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4 Problem statement and solution procedure

Ananthasuresh and Ashby (2003) presented how materials
can be selected based on failure criteria for a simple three-
element truss (see Fig. 6) using the design index discussed

above. They showed that the design index D can be
expressed as a function of the geometric parameter, θ,
which is the angle that each inclined truss member makes
with the base member. Because there is now an additional
design freedom (namely θ), it is possible to optimize

Fig. 4 a Price ρ vs design
index D for the best materials
selected among all classes
of engineering materials (except
polymers). Mean values are
shown instead of the min/max
values. b Young’s modulus E vs
the design index D for the best
materials selected among all
classes of engineering materials
(except polymers). The mean
values are shown instead of the
min/max values

Fig. 5 a, b Properties relevant
to stiffness optimization from
the best polymer materials se-
lected for each value of D. The
mean values are shown instead
of the min/max values for each
property
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another functional requirement in addition to minimizing
the cost. In this work, we extend their work by investigating
how the design index would change when we consider
trusses having more elements.

Just as in the case of the simple truss in Fig. 6, we take
the geometry variables as the design variables in optimiza-
tion. This is necessary because the areas of cross-section are
determined by failure criteria, and thus, they are no longer
the design variables. The internal forces on which the
design index D depends are determined by the finite
element analysis. This helps us choose the best material
as per Fig. 4 or 5. The solution procedure is illustrated in
Fig. 7 using a flowchart and is explained next.

Our objective is to determine the geometry of a truss
subject to given static loads, boundary conditions on the

joints, and the size of the design domain. The requirements
are maximum stiffness (minimum strain energy), minimum
cost of material used, and safety against failure. The design
variables are the lengths and the orientations of some of the
elements that decide the overall geometry. For instance, in
Fig. 9 of the first example, the length and orientation of
element 1 are the geometry variables because of symmetry
and the given fixed and force application points. The state
variables are the areas of cross-section, displacements,
internal forces of the members, and material properties. It
should be noted that safety against failure determines the
areas of the cross-section of the truss members. The selection
of the best material is based on minimizing the cost of the
material. The maximum stiffness requirement is met by
optimizing over the design variables. The problem is posed
as follows:

Minimize
θi;li

: Strain energy ¼ 1

2
uTKu

Subject to: the static elastic equilibrium equation
Ku¼F

ðP1Þ

satisfying

uj ¼ 0 for degrees of freedom j

Fk ¼ Fexternal for specified degrees of freedom k

Fig. 6 Schematic of the simple
truss (Ananthasuresh and
Ashby 2003)

Fig. 7 Solution procedure for simultaneous material selection and
geometry optimization of statically determinate structures

Fig. 8 The dashed line shows how, by using a sigmoid function, the
discontinuous material property curve is made continuous
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l

Fig. 9 Example 1, l and θ
are the design variables. The
numerical labels of the truss
members are indicated in italics

60 S. Rakshit, G. K. Ananthasuresh



and failure criteria for tensile and compressive members,
i.e.,

Pt ¼ StAt ð7Þ

Pc ¼ π2EA2
c

φL2c
ð8Þ

It should be noticed that the failure criteria are not posed
as constraints. Because the minimization of material cost is
accomplished in selecting a material, that too is not posed
as a constraint. However, if we want to put an upper bound
on the material cost, it may be imposed as a constraint. The
solution procedure is indicated in Fig. 7. The function
evaluation for computing the strain energy is not straight-
forward in this study because the material is not known
until the design index is computed. But the design index
cannot be computed without knowing the internal forces in
the trusses. Internal forces are to be computed by finite
element analysis. For this, we need to know the areas of
cross-section. But, areas of cross-section can be computed
to satisfy the failure criteria only after we know the material
and internal forces. This conflict is resolved for statically
determinate trusses where the areas of cross-section and the
material properties do not influence the internal forces for
the given geometry and boundary conditions (i.e., loading
and displacement boundary conditions). Henceforth, we
continue with the description of the solution methodology
for this class of trusses.

Because areas of cross-section and material properties do
not influence the internal forces for the classes of trusses
considered in this paper, we first take unit values for both
and perform a finite element analysis to compute the internal
forces. Then, the design index is evaluated. Based on this,
the material is selected as per Fig. 4 or 5. By knowing the
material properties and internal forces, we then compute the
areas of cross-section using (2) and (3) to satisfy the
respective failure criteria on tensile and compression
members. After this, the finite element analysis is repeated
with the chosen material and the computed areas of cross-
section to evaluate the strain energy.

The selection of the material using Fig. 4 or 5 may imply
a look-up table technique. Although it can be done that
way, we do not adopt the look-up table method, as that
would make the problem non-smooth. Instead, we smooth-
en the “material selection curve” in terms of a continuous
value of the design index. This is discussed next.

4.1 Dealing with non-smoothness

Non-smootheness occurs in this problem when the design
index changes the material choice abruptly as shown in
Figs. 4 and 5. This poses a problem in calculating the

analytical derivatives of the material properties required in
continuous optimization. We remove this by smoothening
the curve at material transitions by using sigmoid function.
This is illustrated in Fig. 8 with exaggerated smoothening
for the sake of illustration. Mathematically, it can be written
for Young’s modulus (and similarly for other properties) as
follows:

E ¼ E1 þ
XNm

i¼2

Ei � Ei�1

1� e�s D�Di�1ð Þ ; ð9Þ

where Nm is the number of best materials over the entire
range of D; Dj, the jth transition in the best material along
the D-axis in Fig. 8; and s, the smoothening parameter. The
above smoothening of the material property vs the design
index curves is also realistic because all material properties
always have a range of values. In generating Figs. 4 and 5,
the average values within that range were considered. With
smoothened model, the values will be anywhere within the
range. Note, however, that the material properties are non-
convex functions of the design index that, in turn, is a
complicated function of the design variables. This makes
the optimization problem (P1) non-convex.

4.2 Sensitivity analysis

We used the fmincon program of the Matlab (2006) toolbox
to solve the optimization problem (P1). The gradients were
computed analytically as explained next. The sensitivity
analysis is somewhat intricate because the choice of
material depends on the design variables. It is further
complicated because strength related constraints (which
determine the areas of cross-section) depend on both the
material choice and the internal forces. Our approach to
sensitivity analysis is described next.

Let x be the design variable. If we denote the strain
energy as SE, then we can write its derivative with respect
to the design variable as shown below:

dSE

dx
¼ 1

2
uT

@K

@x
þ @K

@E

dE

dx
þ @K

@A

dA

dx

� �
u

þ uTK
du

dx
: ð10Þ

The symbols in the above equation are all defined at the
beginning of the paper. The partial derivatives ∂K/∂x, ∂K/
∂E and ∂K/∂A can easily be computed as we know the
explicit dependence of the stiffness matrix K on these
quantities. The derivative of the Young’s modulus E is to be
computed as follows:

dE

dx
¼ @E

@D

� �
dD

dx

� �
: ð11Þ
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The first term in the right hand side of (11) is easily done
with the help of (9). The computation of the second term is
explained below:

dD

dx
¼ y t

dyc
dx � yc

dy t
dx

y2
t

; ð12Þ

where

dy t

dx
¼
XNt

i¼1

Pti
dLi
dx

þ Li
dPti

dx

� �
; ð13Þ

dyc

dx
¼
XNc

i¼1

ffiffiffiffiffi
12

p

p
2
ffiffiffiffiffiffi
Pci

p dLi
dx

þ L2i
2
ffiffiffiffiffiffi
Pci

p dPci

dx

 !
; ð14Þ

and Nt and Nc are the number of truss members in tension
and compression, respectively.

By substituting (13) and (14) into (12), we get dD/dx,
which we substitute back into (11) to get the material
property derivative, dE/dx.

Next, we discuss how dA/dx is computed. For tensile and
compression members, we get the following with the help
of (2) and (3).

dAi

dx
¼ dSt

dx
Pti þ St

dPti

dx
ð15aÞ

dAi

dx
¼

ffiffiffiffiffiffiffiffi
12p

p ffiffiffiffiffiffi
Pci

E

r
dLci
dx

þ Lci
2
ffiffiffiffiffiffiffiffiffi
EPci

p dPci

dx
� Lci

ffiffiffiffiffiffi
Pci

p
2E1:5

dE

dx

( )

ð15bÞ
The two equations (15a and b) have the following

general form.

dAi

dx
¼ @f

@x
þ @f

@Pi

dPi

dx
; ð16Þ

where Ai= f (x, Pi), i.e., some function of x and Pi.
It should be noticed that dA/dx involves components of

dP/dx, which is not readily available. It can be computed
from the element-level force equilibrium equations. That is,
for individual members, in terms of local nodal displace-
ment variables ui1 ; ui2ð Þ, we have

EAi

Li
ui1 � ui2ð Þ ¼ Pi ; ð17Þ

the differentiation of which yields

dE

dx

Ai

Li
ui1 � ui2ð Þ þ dAi

dx

E

Li
ui1 � ui2ð Þ � EAi

L2i

dLi
dx

ui1� ui2ð Þ

þ EAi

Li

dui1
dx

� dui2
dx

� �
¼ dPi

dx

) Pi

E

dE

dx
þ Pi

Ai

dAi

dx
� Pi

Li

dLi
dx

þ EAi

Li

dui1
dx

� dui2
dx

� �
¼ dPi

dx
:

ð18Þ

By noting the coordinate transformation uli ¼ Rugi between
the local (i.e., uli ) and global (i.e., ugi ) displacement
variables for the ith element, we obtain

dui1
dx

� dui2
dx

¼ b
dugi
dx

þ db

dx
ugi ; ð19Þ

where b ¼ cos θið Þ sin θið Þ � cos θið Þ � sin θið Þ½ �. The sub-
stitution of (19) into (18) yields

Pi

E

dE

dx
þ Pi

Ai

dAi

dx
� Pi

Li

dLi
dx

þ EAi

Li
b
dugi
dx

þ db

dx
ugi

� �
¼ dPi

dx
:

ð20Þ
When this operation is done for all the Ne elements, (20)
gives

C B½ �
dP
dx
du
dx

� �
¼ gf g ; ð21Þ

where C, B and g are the collective expressions making up
the coefficients of dP

dx ,
du
dx , and unity, respectively. But this

now involves du/dx. Both dP/dx and du/dx also appear in
additional 2Nn equations that are obtained by differentiating
the global force equilibrium equation.

Ku ¼ F

) @K

@x
þ @K

@E

dE

dx
þ @K

@A

dA

dx

� �
uþ K

du

dx
¼ 0

) @K

@x
þ @K

@E

dE

dD

dD

dP

dP

dx
þ @K

@A

@f

@x
þ @f

@A

dP

dx

� �� �
u

þ K
du

dx
¼ 0

ð22Þ
Now, (21) and (22) together yield the (Ne+2Nn) equations
in terms of equal number of variables, viz., dP/dx and du/
dx, as shown below:

C B

Q K

" # dP

dx
du

dx

8><
>:

9>=
>; ¼ � @K

@x
u�

g @f

@x

@K

@A
u

� �
; ð23Þ

where Q ¼ dE
dD

dD
dP

@K
@E uþ @f

@A
@K
@A u. By solving (23), all other

quantities pertaining to the sensitivity of the strain energy
can now be computed.

The results of finite difference derivatives and analytical
derivative calculated by our method for example 1 for a
load of 1,000 N are as follows:

– Results from finite difference derivative=[−1.141 5.4573],
– Results from analytical calculation=[−1.141 5.4573],
– Difference=[0.2855 0.5255]×10−4, and
– Percentage error=[25.022 9.6284]×10−6.

Next, we show some results to illustrate how, depending
on the loading conditions, boundaries and size, different
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materials are selected as the single best material for the
entire truss along with, of course, the best geometry and
areas of cross-section for individual members.

5 Results and discussion

5.1 Example 1

For the first example, the topology, loads, and the
displacement boundary conditions are taken as shown in
Fig. 9. Nodes 1 and 5 are fixed. The length and inclination
of element 1 are the geometry-defining design variables.
Due to symmetry, the lengths of elements 1 and 4 are the
same, and the inclination of element 4 is the mirror image
of that of element 1 about the horizontal axis. A downward
vertical force of 1,000 N is applied at node 3. The structure
is 2 m long in the horizontal direction and 1 m in the
vertical direction. For these specifications, the optimal
geometry was obtained as shown in Fig. 10. The
corresponding material was low alloy steel. The cross-
sectional areas of the members in the increasing order of
element numbers are 1.0e−003×[0.1004 0.0839 0.0871
0.0007 0.0005 0.0003] m2. The corresponding internal
forces are 1.0e+003×[−1.52015 −1.151 −0.643 1.52015
1.151 0.643] N. A positive sign indicates the tensile force,
whereas a negative sign the compressive force. The value
of the design index D for the optimum solution is 0.0392,
and the cost of material is $1.287.1 The widths of the

members shown in all the figures are only representative
and are not to scale. This is because some cross-section
areas are more than 100 times larger than some others.

A few variations of this example were tried to see how
the optimal geometry and the best material choice vary with
different specifications. When the applied force was
reduced to 90 N, keeping everything else the same, the
best material turned out to be lightweight concrete. The
corresponding optimized geometry is shown in Fig. 11. The
areas of cross-section in the increasing order of element
number were computed to be 1.0e−003×[0.1785 0.0492
0.1635 0.0796 0.0465 0.0512] m2. The corresponding
internal forces are 1.0e+002×[−1.155 −0.675 −0.743
1.155 0.675 0.743] N. The value of the design index D is

1 This does not include the cost of processing the material. Therefore,
it only gives the cost of raw material as given in the database of CES
software (Cambridge Engineering Selector software, Granta design
2003, Cambridge, UK; http://www.ces.com).

Fig. 10 Optimal layout of the structure shown in Fig. 9 for force=
1,000 N. The selected best material is low alloy steel. The material
cost of the truss is $1.287. The strain energy calculated is 18.7325 J

Fig. 11 The optimal layout for structure with force=90 N but with the
same specifications as in Fig. 9. The best material is lightweight
concrete. The cost of the material is $0.0357. Strain energy is 0.034 J

Fig. 12 Optimum geometry corresponding to a structure ten times as
big as that of Fig. 9. The applied force F=1,000 N. The best material
comes out to be lightweight concrete. The cost of the material is
$7.659, and the strain energy is 2.935 J
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0.179. We see that, although the internal forces are less than
those in the previous case, the cross-sectional areas are
larger; this is because the material selected is lightweight
concrete that has much lower failure strength and Young’s
modulus than those of a low alloy steel. At first sight, this
may appear counterintuitive, as larger value of cross-
sectional areas mean higher volume of material, but the
density×price of cast iron is much lower than that of steel.
This is determined by the appropriate value of D.

When the size was increased by a factor of 10 (while
keeping all others, including the force, the same), once
again, lightweight concrete emerged as the best material. Its
optimal geometry is shown in Fig. 12. For the same
geometrical layout when polymers are considered instead of
all engineering materials excluding polymers (see Fig. 5),
polyethyl teraphtalite became the best material (Fig. 13).

When the force was increased to 1,000 N, the best material
was polypropylene (Figs. 14 and 15).

5.2 Example 2

The specifications for the second example are shown in
Fig. 14. The design domain is 2 m long and 1 m in height.
The applied external load is 1,000 N. The optimal material
came out to be low alloy steel, and the optimal structure is
shown in Fig. 16. Now we changed the load to 100 N. The
optimal material turns out to be lightweight concrete, the
optimal geometry of which is shown in Fig. 17.

We now consider a force of 1,000 N, which is directed
along member 1. Only member 1 is adequate to withstand
such an external load. For this case, we indeed got this
result. The resulting structure is shown in Fig. 18. The
cross-sectional areas of the elements in order of increasing
element number are 1.0e−003×[0.5694 0.0001 0.0001
0.0001] m2. The corresponding internal forces in the
elements were 1.0e+003×[1.0 0.0 0.0 0.0] N. We notice
that the cross-section areas for members 2, 3, and 4 have
reached their lower bounds (this is indicated by dashed
lines in the figure), and the corresponding internal forces in
them are zero. Thus, we can safely omit all elements except
element 1. This defines a new topology in the sense that,

Fig. 13 Optimum polymer structure with force=100 N. The best
material is polyethyl teraphthalite. The cost of the materials is $0.0012,
and the strain energy is 0.9 J

Fig. 14 Optimal layout for force=1,000 N, with polypropylene as the
best material. The cost of the material is $0.0024, and the strain
energy is 405.063 J

21

23

4

1

3

θ  
l  

Fig. 15 Example 2, l and θ are
the design variables. The nu-
merical labels of the truss mem-
bers are indicated in italics

Fig. 16 Optimal layout for structure in Fig. 15 with force=1,000 N.
The best single material is low alloy steel. The material cost is $1.947,
and the strain energy is 20.0125 J
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instead of connectivity among four nodes {1, 2, 3, 4}, we
now have the connectivity only between {1, 2}.

5.3 Example 3

The specifications for this example are shown in Fig. 19.
The number of geometry design variables is four. For a load
of 1,000 N, the optimum material turned out to be low alloy
steel whose geometry is shown in Fig. 20. This solution
resembles a structure with bars (compression members) and
wires (tension members).

5.4 Example 4

We now consider an example with a comparatively larger
number of design variables. The geometry of the structure
looks as shown in Fig. 21. A force of 100 N is applied. The
best material turns out to be lightweight concrete. The
optimal layout is shown in Fig. 22.

The cross-sectional areas of the members in the order of
increasing element number are 1.0e−003×[0.0714 0.0705
0.0697 0.0701 0.0206 0.0348 0.0352 0.0001 0.0001 0.1358
0.1213 0.1314] m2, and the corresponding internal forces in
the members are [103.4863 102.2319 101.0751 101.7031
−18.5343 −18.5343 0.0 0.0 −41.0978 −33.4393 −39.7630] N.
We note that members 8 and 9 have reached the lower limit for
cross-section areas. The corresponding internal forces are also
zero. Therefore, we can safely eliminate these members
without altering the forces in the other members of the
structure. This will define a new topology for the structure,
which is shown in Fig. 23.

6 Discussion

In the course of the optimization procedure, we noticed that
it takes about the same number of iterations as the usual
geometry optimization with a fixed material. This is shown
in Table 1.
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Fig. 19 Example 3: l1, θ1, l2,
and θ2 are the design variables.
The numerical labels of the truss
members are indicated in italics

Fig. 18 The optimal structure when only a horizontal load=1,000 N
is applied. The internal forces in the dashed members are zero, and
their cross-sections have reached the lower limit. Hence, such
members may be safely removed from the parent structure. The best
material is aerated concrete. The material cost is $0.0378, and the
strain energy is 0.1171 J

Fig. 17 The optimal structure for force=100 N and everything else is
the same as in Fig. 15. The selected material is lightweight concrete.
The material cost is $0.0397, and the strain energy is 0.0368 J

Fig. 20 The optimal layout for the structure in Fig. 17 and force=
1,000 N. The best material is low alloy steel. The material cost is
$2.23, and the strain energy is 19.415 J
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Thus, the method described in this paper is a new way of
reducing computation time for researchers who follow the
procedure of taking each material from a prospective best-
material set and optimizing the geometry and, finally,
choosing the best combination of material and geometry.

It should be noted that some of the examples occasion-
ally encountered convergence problems. This is to be
expected because this problem is inherently non-smooth.
Although the non-smoothness due to material selection is
circumvented by smoothening, this does not ensure
smoothness when a truss member suddenly changes from
being tensile to compressive or vice versa as the geometry
changes. It occurs rarely, and so it did not affect most of the
examples attempted to generate the results for this work. In

our work, we selected the maximum and minimum bounds
on the design variables so that the tensile members remain
tensile and compressive members compressive, and strain
energy is a smooth function of the design variables.

This can be illustrated with the first example for which
the strain energy is plotted as a function of design variables
L1 and θ1 for both restricted and unrestricted design
domains in Figs. 24 and 25. It can be noticed that the
differentiability of the strain energy is lost outside the design
domain. This is due to the change of sign in the internal
forces. This type of change in sign for a geometric parameter
(θ1 for example 1) is shown in Figs. 26 and 27.

In the methodology presented in this paper, we have
selected only the statically determinate trusses, i.e., the
trusses with zero states of self-stress (Calladine 1978). The
number of states of self-stress implies that such a truss
cannot be assembled without stressing at least that many
members of truss. The states of self-stress can be determined
by Maxwell’s rules as pointed out by Calladine (1978), or
equivalently, using the Grubler’s formula (Erdman et al.
1984) for determining the degrees of freedom (dof ) of a
linkage. A number dof with the negative sign indicates the
number of states of self-stress. For a planar truss structure,
the Maxwell’s rule gives that if there are v vertices (nodes)
in a truss, then the minimum number of members b
required to satisfy the Maxwell’s rule is b ¼ 2v� 3. The
same result can be derived from Grübler’s formula for the
number of dof for linkages. According to this, the number
of dof of a linkage having b members and j single dof joints
is given by dof ¼ 3 b� 1ð Þ � 2j.

The current procedure described in this paper applies
only to statically determinate trusses under a single loading
condition. This can be justified on the basis of the fact that

Fig. 22 The optimal layout for the structure in Fig. 20 and force=
100 N. The best material is lightweight concrete. The material cost is
$0.0445, and the strain energy is 0.0251 J
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Fig. 21 Example 4: l1,θ1,l2,θ2,l3,θ3,θ4, and θ5 are the design variables.
The numerical labels of the truss members are indicated in italics
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Fig. 23 The optimal topology
after removing non-loaded
members

Table 1 Number of function evaluations for example 1

Material Number of function
evaluations

Low alloy steel 21
Wood 22
Lightweight concrete 19
Aerated concrete 22
Simultaneous material selection
and geometry optimization

21
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optimal layouts of trusses are usually statically determinate.
As Calladine (1978) noted, they are “simply stiff,” having
states of zero self-stress and not ones that are “over-stiff” or
“redundant” (statically indeterminate) that have states of
self-stress less than zero. Because the number of states of
self-stress implies that such a truss cannot be assembled
without stressing at least that many members, it can be
argued that a statically indeterminate truss will contain a
larger number of stressed members than a statically
determinate one for similar geometry, external loads, and
boundary conditions. This will automatically rule out
statically indeterminate truss layouts from our scope of
optimization, as our objective is to minimize the strain
energy. Special geometrical relationships and symmetry
may enable the assembly of statically indeterminate trusses

layouts without any stressed members. Hence, considering
such layouts in the framework presented in this paper may
have merit, and it is worth pursuing to see if such special
geometrical relationships emerge from the geometry opti-
mization. When multiple loading conditions are considered,
a statically determinate truss may no longer be optimal.
Therefore, a future extension of this work is to consider
statically indeterminate trusses as well as other structures
such as frames consisting of beam elements. For these
types, a new method is needed for computing the design
index.

In our work, we have not included the cost of processing
the materials or the cost of joints between the truss
members. This can be included in the formulation of the
problem as a constraint. Ashby’s method of process
selection will be useful in this regard. This forms the basis

Fig. 24 The strain energy as a smooth function of design variables in
the range 0≤L1≤2 m and 0≤θ1≤0.2 rad. As seen, the function is
smooth

Fig. 25 The strain energy in the range 0≤L1≤2 m and 0 � θ1 � π
2 rad.

As seen, the function is non-smooth. This occurs when there is
transition from tensile to compressive members

Fig. 26 Tensile and compressive members in the range 0≤L1≤2 m
and 0≤θ1≤0.2 rad. Tensile members are colored blue and the
compressive members red

Fig. 27 Tensile and compressive members for a value of θ1≥0.2 rad.
Tensile members are colored blue and compressive members red.
Notice that member 5 has become compressive and member 6 tensile.
Such change in the direction of the internal force in the members give
rise to non-convexity in strain energy
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for broadening this work, which is a first step toward a
more general method for more realistic scenarios.

7 Closure

This paper is concerned with simultaneous optimal selection
of a material and determination of the geometry of statically
determinate trusses under static loads. Most structural design-
ers have to design with materials that are readily available in
the market. This need has prompted us to deal with readily
available materials rather than going for materials with tailor-
made microstructures. Therefore, we consider the available
materials in a database and used a design index to choose the
best single material along with the corresponding best
geometry. This methodology is developed with the simplest
type of structures—trusses. An optimization problem is
formulated to maximize the stiffness of a structure while
simultaneously minimizing the cost of material and obeying
failure criteria for tensile and compression members. Three
examples and their variants are presented to illustrate the
influence of the size and the magnitude of the force on the
resulting optimum combinations of material and geometry.
Two examples show that even the topology can change when
some members reach their lower limit (almost zero) on the
cross-section area. Thus, it shows the promise for posing and
solving the most general problem of topology optimization
with geometric variables and material selection from a
database in a framework that allows the use of gradient-
based continuous optimization algorithms. A few issues for
further work are also identified.

Acknowledgment The second author thanks Prof. M. F. Ashby with
whose collaboration this work was initiated and the concept of the
design index was conceived.
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