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Abstract 
The choice of the best material (meaning the least mass of material carries the given loads safely) is different for axially 
loaded tension and compression members. Using two materials in trusses, one for tension members and the other for 
compression members, is not a good solution because of manufacturing restrictions, potential for galvanic corrosion, 
and other incompatibility problems. In this paper, we develop a criterion for choosing a single material for a truss with 
given loads in all its members. These loads change when the geometry of the truss changes, which in turn changes the 
choice of the best single material. Then a question arises: what is the best choice of a single material, truss geometry, 
and shapes and sizes of cross-sections of the members that maximizes the stiffness, minimizes the material weight or 
cost, and carries the loads safely? Here, we present criteria and a method for concurrent design and material selection 
using simple triangulated trusses as examples. 
 
1. Introduction 
To optimize the performance and cost, the task of a designer is to determine the geometry of component(s) and 
material(s) for them under some functional requirements and constraints.  The term “geometry” is used here to imply 
the connectivity and layout (i.e., topology) of components as well as the shapes and sizes of the components. When the 
designer commits to certain materials, there are techniques to optimally determine their geometry. Likewise, when the 
geometry is chosen, there are techniques to select the best material(s). Fixing one in general influences the optimality of 
the other. Concurrently determining the optimal geometry and selecting the best material(s) remains an open issue in 
many design problems. This can be best explained in the case of load bearing structures. 
 Structural designers usually want to minimize the weight (or cost) and maximize the stiffness for given loads 
and available space. When a material is chosen, there are techniques to optimally determine the geometry including 
topology, shape, and size (see, for example, a book by M. P. Bendsoe and O. Sigmund (2003)).  On the other hand, for 
components of chosen geometry, most suitable materials can be systematically identified (see, for example, a book by 
M. F. Ashby (1999)). The criteria for material selection for a structural component depend upon the type of loading on 
it such as tension, compression, bending, twisting, etc. But a structure as a whole may consist of many components with 
different types of loads in them. Allocating a different material that is best for each component is not a good solution 
because it makes manufacturing difficult and may lead to galvanic corrosion and other incompatibility problems. Thus, 
there is a need to develop criteria for choosing the best single material for the entire structure. This is the first issue 
addressed in this paper. 

The criteria developed for selecting a best single material for all components depends on the type(s) of loading 
in the individual components. But the type of loading in components will in general change as the geometry (topology 
or layout, in particular) of the structure changes implying that the choice of the best material changes with geometry. 
Therefore, fixing the geometry and then selecting the best material or determining the geometry for an arbitrarily 
selected material are not likely to be truly optimal. A method for achieving the optimal material-geometry combination 
is the second issue addressed in this paper. 

In the remainder of this paper, the two issues outlined above are further elaborated using simple planar trusses 
as examples, and weight and cost of material, stiffness, and strength as design objectives. So, the next section considers 
a three-bar truss to present the criterion for selecting a single material for the entire truss. Following this, the method for 
concurrent design and material selection for this truss is described. The two ideas are generalized for other trusses in the 
subsequent section with concluding remarks in the final section. 



 
2. Material selection for a three-bar truss 

The members that make up truss structures are not all loaded in the same way: some carry tension, and others 
compression. Consider the simplest form of a statically determinate, simply supported truss consisting of three bars with 
vertical and horizontal loads applied at the unsupported vertex. The truss and its parameters are shown in Fig. 1 and 
Table 1. The angle θ  determines the geometric configuration of the truss, L  its size, and F  the loading acting on it.  

 

Table 1 Truss parameters 

Truss 
member 

Length C/S 
area 

Internal 
force 

1 )cos(2 θL  1A  1P  
2 L  2A  2P  
3 L  3A  3P  

 

 

Fig. 1 Schematic of the truss 

 For static equilibrium of the entire truss, the horizontal reaction force at the left support is simply )( nF− . The 

vertical reactions at the left and right supports, lR  and rR  respectively, are given by: 
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Further, the static equilibrium at each vertex gives the internal forces as follows such that a positive numerical value 
indicates tension, and negative value compression. 
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Since slender tension members fail by yielding, and compression members by buckling, we determine the assumed 
square areas of cross-sections as follows where the subscripts t  and c  indicate tension and compression respectively. 
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The overall mass of the structure can then be given by 
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where tN  and cN  indicate the number of tension and compression members respectively. The above equation includes 

two material indices, viz., ( )yσρ /  and ( )2/1/ Eρ . The values of coefficients, tψ  and cψ , which multiply the 
respective material indices, are determined by the type of loading (tension or compression) and its magnitude that exists 
in each member of the truss. If these values are known, the best material for minimum mass can be chosen from a 
material database. It should be noticed that it is the ratio of the two coefficients that decides the choice of the best 
material rather than their individual numerical values. A design index γ  is now defined as follows to facilitate drawing 

of the contours of constant mass in the plot of ( )yσρ /  against ( )2/1/ Eρ  and thereby selecting the most suitable 
material. 
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This design index indicates the relative weights of the two material indices in Eq. (4). In order to see how this is useful, 
consider a performance measure 2211 MCMCf += , which we want to minimize. This represents a straight line in a 

plot of 1M  vs. 2M  for given values of f  and )/( 12 CC . Fig. 2a shows a number of such iso-performance lines 

drawn for the fixed ratio of )27.4(/ 12 =CC , and different values of f . As we move down, the value of f  
decreases. Imagine that all materials from a database are drawn as ovals in this plot according to their range of 
respective material indices, i.e., maximum and minimum values. Now, by moving the f -line downwards, we can 
identify which material leads to its minimum value. If the same is plotted on a log-log plot, which is often necessary as 
properties of different materials differ by a few orders of magnitude, the f -line becomes a curve as shown in Fig. 2b 
(see Section 9.6 in Ashby (1999) for further description). The CES® (2003) software allows this visualization on linear 
and log plots for any combination of material indices. Now, we return to our example and show how the design index is 
useful. 

 
 

Fig. 2 Visualizing the minimization of a performance measure f  that is a linear combination of two material 

indices, 1M  and 2M  for a given ratio of their weights. (a) linear plot (b) log-log plot 

Considering only metals in the database, in Fig. 3, the iso-performance curves with the least possible mass in 
each case are shown for three different values of γ  = 0.01, 1, 100. Up to γ  = 1, aluminum-boron composite turns out 
to be most probable choice. For higher values, beryllium alloys dominate. Titanium alloys seem to be the next best 
candidates, among a few others. All of these are expensive materials to build trusses. Thus, we need to include the 
material cost. For this, we can use the same index but plot it in the graph of ( )yσρ /*Price  

against ( )2/1/*Price Eρ . Then, as shown in Fig. 4, low alloy steels emerge as the best choice until γ  = 1. For larger 
values of γ , cast irons dominate. This is sensible because large values of γ  indicates that more members in the truss 
are under compression. In both the figures, it helps to examine other desirable materials by translating the iso-
performance curves. 

Next, all polymer materials in the database were considered. Figs. 5 and 6 show possibilities when cost is not 
considered and when it is considered, respectively. When cost is not a criterion (Fig. 5), expensive fiber-reinforced 
polymers appear. With cost included, more reasonable polystyrene, polypropylene, etc., appear as the most suitable 
choices. The same was also done considering all materials in the database (figures not shown). When cost is included, 
concrete appears as one of the best materials. 
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Fig. 3 Material selection for trusses considering only metals. Since price is not included, expensive alloys and 
fiber composites turn out to be the most suitable materials to minimize the mass. 
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Fig. 4 Material selection for trusses considering only metals but cost included. Low alloy steels and cast irons 
now emerge as the best candidates. 
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Fig. 5 Material selection for trusses considering only polymers.  Fiber reinforced polymers appear to be the best 
because cost is not a criterion. Fibers themselves, enclosed in the green envelope, are ignored. 
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Fig. 6 Material selection for trusses considering only polymers. With cost included, polypropylene, polystyrene, 
etc., emerge as the most suitable materials. 
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It is thus clear that a single material can be selected even though the individual members in the truss may 
indicate different best material choices. The Index, γ , developed in this section can also be applied to other similar 
problems. 

Consider a simple extension to member sections that are not square but are shaped to increase—or if desired, 
to reduce—bending stiffness of compression members. We define a shape factor S as 
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where I  is the smaller second moment of inertia of the section and A  is the area of its cross-section. Note that 1=S   
for a square cross-section; efficiently shaped sections (tubes, I-sections, etc.) have values as high as 30. The areas of 
tensile and compressive members, previously given by Eq. (3) now become: 
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and the values of tψ  and cψ  become 
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Thus, the procedure described above for choosing the single best material now can also select the best material-shape 
combination for all members in the truss. 

Even in this simple example, it is interesting to note that γ  depends on the scale factors of size ( L ) and load 

( F ), and geometry (θ ). In particular, γ  varies linearly with L , and bears an inverse relationship with 2/1F . Thus, 

for a given configuration and loading, the choice of the material is not affected if the ratio ( )2/ LF  is held constant—a 
fact well known in structural optimization (F. R. Shanley, 1953). It should also be noted that the dependence of γ  on 
θ  and n  is not straightforward. This is explored further to suggest a scheme for integrating material selection into the 
process of determining the geometry of the truss, i.e., θ  in this case. 

 

2. Concurrent design and material selection for the three-bar truss 

Using the expressions presented above, it is easy to plot the variation of γ  as a function of θ  while keeping the rest of 
the parameters fixed. This means that we are trying to determine how the geometric variable (θ ) affects γ , which in 
turn affects the material (and shape) selection. Figs. 7a-7c show that this dependence is complex and is certainly not 
monotonic. A sharp change in these graphs is a result of one or more members of the truss making a transition from 
tension to compression or vice versa. This implies that changing the geometry of the truss could strongly affect the 
design index used to choose the most suitable material. The question then arises as to how one would determine the best 
geometry in conjunction with the most suitable material (and cross-section shape). This requires an objective criterion. 
In the case of the truss, stiffness of the truss is a reasonable criterion to work with. The problem of concurrent design 
and material selection now becomes equivalent to choosing the value of θ  such that the truss becomes the stiffest 
among all the possible geometric cases where the most suitable material is chosen in each case. Thus, it becomes an 
optimization problem for the stiffest and strong truss made of the cheapest material and most suitable cross-section 
shape  for a given loading and size. 

 In order to solve this problem using gradient-based optimization methods, a smooth function of relevant 
material properties as a function of geometric design variables (θ  in the present example) is necessary. This could be 
done with the help of the CES® software although it requires tedious effort (which could be potentially automated). An  



Fig. 7a γ  vs. θ  for n  = -0.25  

Fig. 7a γ  vs. θ  for n  = 0.25  

Fig. 7a γ  vs. θ  for n  = 1  



example of this is shown in Fig. 8 where the density ( ρ ) and the Young’s modulus ( E ) are shown as functions of γ . 

The data points in these plots were hand-picked by examining the ( )yσρ /*Price  against ( )2/1/*Price Eρ  plots 
for each value γ  so as to minimize the mass. If all materials are considered, the best material for different ranges of γ  
are shown in Fig. 8. Since cost was included, reasonable materials like low alloy steel, concrete, and wood turn out to 
be the desirable choices. If only polymers are considered, the best materials are shown in Fig. 9. Fitting a suitable 
smooth curve to this point data facilitates integration of material selection into stiffness optimization of the truss.  A 
look-up table where best materials are arranged a priori for each value of γ , can also be used. This latter approach is 
used next for simplicity leaving the other for future work. 

 
Fig. 8 Properties relevant to stiffness optimization from the best materials selected for each value of γ . Mean 
values are shown instead of the min/max values for each property. 

 

 The mean compliance, MC  defined as the work done by the external forces acting on the structure, is often 
used as the objective criterion in the optimization for stiffest structures. The smaller the value MC , the stiffer the 
structure. Hence, we choose the geometry of truss by minimizing MC , which for the given loading and boundary 
conditions of the truss is given by: 

HV nFFMC δδ +=        (9) 

where vδ  and Hδ  are vertical and horizontal displacements of the vertex where the forces are applied (see Fig. 1). 
These displacements, derived using the Castiglianos’ theorem, are as follows. 
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The method for determining the geometric variable θ  that gives the stiffest structure proceeds as follows. 
Given a value of θ , the design index γ  is computed using Eqs. (4) and (5). This is then used to select the best material 
from the look-up table (or smoothened function if that approach is used). The values of this best material are used to 
compute the cross-section areas of each of the truss member as per the strength criterion using Eq. (3). Then, MC  is 
computed using Eqs. (9) and (10). This is repeated for the entire range of values that θ  is permitted to take. The plot of 
MC  vs. θ  indicates the minimum, that is, the stiffest structure. In an actual optimization procedure, this type of 
exhaustive “search” is not done; a gradient-based search algorithm is used instead. Here, we use this technique to 
illustrate some interesting features of this example as well as the non-smoothness of this optimization problem. 

  
Fig. 9 Properties relevant to stiffness optimization from the best polymer materials selected for each value of γ . 
Mean values are shown instead of the min/max values for each property.  

 
3. Results 

Example 1: The results for 5.0,1000,10 −=== nNFmL  are shown in Fig. 10. It can be seen that at the optimum 

value of o63=θ  corresponding to the stiffest truss, the total cost of material (~$1.1) also happens to be almost close to 
its minimum value. As we will see in the subsequent examples, this is not always the case because we did not include a 
constraint on the cost although we ensured that the cheapest material was chosen for each value of θ . 



 

 

Fig. 10 Example 1 with 5.0,1000,10 −=== nNFmL  (a) Stiffness measure, MC (b) Optimum truss where 
line-widths indicate relative proportions of cross-section on a scale of 1-10 with 10 showing the maximum width 
(c) Cost of material. (a) and (c) are plotted as a function of the geometric variable, θ . 

Example 2: The optimum truss for 1,100,10 −=== nNFmL , turns out to be a single-member such that the 
applied force is oriented along its axis to cause compression. Thus, the technique is capable of optimizing even the 
layout of the truss—indicating the promise for topology optimization! Here too, by coincidence, the overall cost is 
minimized. Furthermore, it can be noticed that the best material (aerated concrete) that has the lowest value of E/ρ   
has been chosen (as it should) given that there is only a compression member in this truss. 
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(c) 

Minimum

Minimum



 

 

Fig. 11 Example 1 with 1,100,10 −=== nNFmL  (a) Stiffness measure, MC (b) Optimum truss where line-
widths indicate relative proportions of cross-section on a scale of 1-10 with 10 showing the maximum width (c) 
Cost of material. (a) and (c) are plotted as a function of the geometric variable, θ . 

Example 3: For 5.0,100,10 =−== nNFmL , a complete truss with all its three members present is the stiffest 
truss. As can be seen in Fig. 12, in this case the overall cost of the material is not a minimum. If the cost were to be 
minimized, then the optimum θ  would be 63º for which the mean compliance is slightly larger than it is for the stiffest 
truss. Constrained optimization can automatically resolve these situations. 

(a) (b) 

(c) 

Minimum 

Minimum



 

 
 

Fig. 12 Example 3 with 5.0,100,10 =−== nNFmL  (a) Stiffness measure, MC (b) Optimum truss where 
line-widths indicate relative proportions of cross-section on a scale of 1-10 with 10 showing the maximum width 
(c) Cost of material. (a) and (c) are plotted as a function of the geometric variable, θ . 

Example 4: This example shows that when the size of the structure is small and the force is large, the best material for 
the stiffest structure is low alloy steel and not aerated concrete. For 5,1000,1.0 −=== nNFmL , the results are 
shown in Fig. 13. Although it may appear that the cost is compromised here (not in an absolute sense as the cost is 
extremely low here), it should be noted that cheapest material is chosen to provide the stiffest and strong truss. If we 
impose a constraint on the overall cost, then a less stiff structure will be chosen. 

(a) 

(b) 

(c) 

Minimum 

Minimum 



 

 

Fig. 13 Example 4 with 5,1000,1.0 −=== nNFmL  (a) Stiffness measure, MC (b) Optimum truss where 
line-widths indicate relative proportions of cross-section on a scale of 1-10 with 10 showing the maximum width 
(c) Cost of material. (a) and (c) are plotted as a function of the geometric variable, θ . 

 
4. Discussion 

In spite of the availability of a high-stiffness material (low alloy steel) in the look-up table, aerated concrete was chosen 
in most cases because geometry dominated those designs in deciding the stiffest trusses. This is not always true as was 
seen in Example 4. Thus, a certain combination of loading, size, and geometry may lead to what might appear to be an 
unlikely choice of material. The main point of the approach presented here is that concurrent design and material 
selection would lead to a design that is better than either the case of a best material chosen for a given geometry or the 
case of a best geometry determined for a given material. Therefore, for a given loading and size, this approach enables 

(a) 

(b) 

(c) 

Minimum 

Minimum 



us to choose the optimum design and the best material for it—not before or after the design is determined but as part of 
the design process. 

A notable feature of the optimization problem that selects the best material concurrent with the design is that it 
is a non-smooth optimization problem. The origin of the non-smoothness is sudden transitions between different 
materials as the design index changes with geometry when the force in one or more members changes from 
compression to tension or vice versa. More importantly, the minimum lies at the non-smooth point in most cases. This 
is true in  three out of four examples described earlier. This is problematic when smooth optimization algorithms are 
used. This leaves us with two options. First, we can use non-smooth optimization techniques. Second, we can smoothen 
the material transition by fitting artificial material data curves using sigmoid functions between every pair of adjacent 
materials in the material property vs. the design index plots. 

Extension of this approach to statically indeterminate and large trusses is straightforward. It should be noted 
that even in statically indeterminate trusses, the internal forces in each member are independent of material properties 
and cross-section areas. Therefore, it is possible to compute the design index numerically. The non-smoothness should 
be dealt with care. Two options were noted above. Sensitivity analysis needed to compute the gradients of the objective 
function and constraints with respect to the design variables should now account for the changing “best” material. 

 

5. Closure 

For each component and specified loading, the best material can be identified. But the loading in components is a 
function of the overall geometry—layout (topology) and shape—of the ensemble. Therefore, fixing the geometry and 
then choosing the material, or fixing the material and determining the geometry are not truly optimal. In this paper, 
taking trusses as the examples, the criterion for choosing the best geometry-material combination is presented. In 
particular, the procedure for obtaining the stiffest truss whose members do not fail by yielding (tension members) or 
buckling (compression members) and have the best material and cross-section shape. The material is the same for all 
members in view of manufacturing and compatibility issues. Towards that, a new index that decides the single best 
material for all members is developed. The optimization problem involved here is inherently non-smooth, and this will 
be discussed in forthcoming publications. 
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