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Outline of the lecture
We will discuss some geometry problems that can be cast as 
problems of calculus of variations.

We will also discuss the role of calculus of variations in 
mechanics and structural optimization.

What we will learn:
◦ What kinds of problems belong to calculus of variations?

◦ How do we formulate calculus of variations problems?

◦ What is the connection between mechanics and calculus of variations?

◦ What is the connection between structural optimization and calculus 
of variations?

◦ How does a functional look like?
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Geometry and calculus of variations
There are many problems in geometry that relate to calculus of 
variations.

They pertain to minimal curves and surfaces.

Minimal curves
◦ Geodesics

◦ Maximum enclosing area for a given perimeter

◦ Chains hanging in a force field

◦ Etc.

Minimal surfaces
◦ Minimum surface of revolution

◦ Surfaces of least area enclosed by a given boundary

◦ Etc. 
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Mechanics and calculus of variations
There are three ways to write equations of statics 
and dynamics.

Two of these are related to calculus of variations.

◦ We will discuss them in this lecture and later too.

Structural optimization is essentially calculus of 
variations.
◦ What do we want to optimize in a structure?

◦ Stiffness, flexibility,  strength, weight, cost, 
manufacturability, natural frequency, mode shape, 
stability, buckling loads, contact stress, etc.

◦ All of these can be posed as objective function and 
constraints in the framework of calculus of variations.

We will consider a few problems and formulate 
them in this lecture.

Three 
views of 
mechanics

Statics Dynamics

Final 
result of 
calculus of 
variation!

Force 
balance

F = ma

An 
intermedia
te result of 
calculus of 
variations

Principle 
of virtual 
work

D’Lambert 
principle

Calculus 
of 
variations

Minimum 
potential 
energy 
principle

Hamilton’s 
principle
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Geometry and calculus of variations
There are many problems in geometry that relate to calculus of 
variations.

They pertain to minimal curves and surfaces.

Minimal curves
◦ Geodesics

◦ Maximum enclosing area for a given perimeter

◦ Chains hanging in a force field

◦ Etc.

Minimal surfaces
◦ Minimum surface of revolution

◦ Surfaces of least area enclosed by a given boundary

◦ Etc. 

5Structural Optimization: Size, Shape, and TopologyME260 / G. K. Ananthasuresh, IISc



Curve of least distance between two points in a plane.
You are given two points in a flat plane. You can draw many, many curves that connect 
the two points. Of all those curves, which one has the least length?

The answer is obvious: it is a straight line joining the two points.

Pretend that you do not know the answer or someone is not convinced about it.

How will you pose this as a problem whose solution gives you a convincing proof? 
Here is how:

x

y(x)
ds

(x1,y1)

(x2 ,y2 )

ds

dx

dy

L = ds =ò dx2 + dy2 =ò 1+
dy

dx

æ

èç
ö

ø÷

2

x 1

x2

ò dx = 1+ ¢y 2

x 1

x2

ò dx

We take a small segment ds

and integrate it to get the 
length of the curve y(x)

between the two given 
points.
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Geodesic in a plane
Geodesic:
◦ Curve of least distance between two given points.

Min
y(x )

L = 1+ ¢y
2

x 1

x2

ò dx

Data : x1, x2 , y(x1) = y1, y(x2 ) = y2

x

y(x)
ds

(x1,y1)

(x2 ,y2 )

L here is the functional. Its integrand 
depends on the first derivative of y(x), 
which is denoted as y’(x).
Solution in another lecture!
Observe the problem for now and 
understand it.
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Geodesic on a sphere
z

y
x

A spherical surface can be described in 
parametric form by azimuthal and elevation 
angles and radius R.

x = Rcosq cosf

y = Rcosq sinf

z = Rsinq

dx = R -sinq cosf dq - cosq sinf df( )

dy = R -sinq sinf dq + cosq cosf df( )
dz = Rcosq dq

ds2 = dx2 + dy2 + dz2 = R2
sin2 q cos2 f dq 2 + cos2 q sin2 f df2 + sinq cosf cosq sinf dqdf

+sin2 q sin2 f dq 2 + cos2 q cos2 f df2 - sinq cosf cosq sinf dqdf + cos2 q dq 2

æ

è
ç

ö

ø
÷

= R2 dq 2 + cos2 q df2( )

Then, we can write the differential quantities as…

ds = R dq 2 + cos2q df2( )Therefore,
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Geodesic on a sphere (contd.)
z

y
x

ds = R dq 2 + cos2q df2( )

L = dsò = R dq 2 + cos2 q df2( ) =ò R 1+ cos2 q
df

dq

æ

èç
ö

ø÷

2æ

è
ç

ö

ø
÷ dq

q1

q2

ò

Here, we describe a curve on the sphere as f(q )

Min
f (q )

L = R 1+ cos2 q
df

dq

æ

èç
ö

ø÷

2æ

è
ç

ö

ø
÷ dq

q1

q2

ò

Data :q1, q2 , f(q1) = f1, f(q2 ) = f2

Thus, the geodesic 
problem on a 
sphere becomes…
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Geodesic on any given surface
z

y
x

Any surface can be 
described in parametric 
form using u and v
x = x(u,v)

y = y(u,v)

z = z(u,v)

x x
dx du dv

u v

y y
dy du dv

u v

z z
dz du dv

u v

 
 
 

 
 
 

 
 
 

Then, we can write the differential 
quantities as…

Now, the length of a 
curve on the surface, 
given in its 
parametric form, 
v(u), is given by

L = dsò = dx2 + dy2 + dz2 =ò P + 2Q
dv

du
+ R

dv

du

æ

èç
ö

ø÷

2æ

è
ç

ö

ø
÷ du

u1

u2

ò

P = ¶x
¶u( )

2

+
¶y

¶u( )
2

+ ¶z
¶u( )

2

; R = ¶x
¶v( )

2

+
¶y

¶v( )
2

+ ¶z
¶v( )

2

;

Q = ¶x
¶u( ) ¶x

¶v( ) +
¶y

¶u( ) ¶y
¶v( ) + ¶z

¶u( ) ¶z
¶v( )
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Geodesic on any surface (contd.)
z

y
x

Min
v(u )

L = P + 2Q
dv

du
+ R

dv

du

æ

èç
ö

ø÷

2æ

è
ç

ö

ø
÷ du

u1

u2

ò

Data :u1, u2 , v(u1) = v1, v(u2 ) = v2

x(u,v), y(u,v), z(u,v)

P = ¶x
¶u( )

2

+
¶y

¶u( )
2

+ ¶z
¶u( )

2

; R = ¶x
¶v( )

2

+
¶y

¶v( )
2

+ ¶z
¶v( )

2

;

Q = ¶x
¶u( ) ¶x

¶v( ) +
¶y

¶u( ) ¶y ¶v( ) + ¶z
¶u( ) ¶z

¶v( )

This is the general form of the 
geodesic problem for any surface 
specified in parametric form.
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Now, with a constraint.
Geodesic problems have an objective function, which 
is an integral. The integral depended on the derivative 
of the variable function.

Now, we will consider a problem with a constraint 
that is also an integral of the variable function.

Such problems where the constraint is also an 
integral, we call them isoperimetric problems.

By the way, the expressions in the integral form are 
called functionals. But functionals need not be of 
only integral form. More later….
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Queen Dido’s “isoperimetric” problem

If someone gave you a closed loop of a chain of length 
L and asked you to take as much land you can enclose 
with it, as Dido, the Queen of Carthage (present day 
Tunisia) did, what shape would you put that chain on 
land? (provided you want to have maximum area of 
land to own)

Constant perimeter and hence it is called an isoperimetric problem.
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Maximum area enclosed by a curve of given perimeter.
It is convenient to use parametric 
representation of a closed curve because 
explicit form y(x) may need to be multi-
valued. Let t = 0 to L, be the parameter. 
Let the curve be given by x(t) and y(t).

x

y

 

L =
dx

dt

æ

èç
ö

ø÷

2

+
dy

dt

æ

èç
ö

ø÷

2ì

í
ï

îï

ü

ý
ï

þï0

L

ò dt = x2 + y2( )
0

L

ò dt

 
0 0

1 1
( ) ( )

2 2

L L
dy dx

A x t y t dt xy yx dt
dt dt

 
    

 
 

P
er

im
et

er
E

n
cl

o
se

d
 a

re
a

Notation

 

x =
dx

dt

y =
dy

dt
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Maximum enclosed area with a curve of given 
perimeter.

x

y  

 

( ), ( )
0

2 2

0

1
Min

2

Subject to

0

Data :

L

x t y t

L

A yx xy dt

x y dt L

L

  

  





New features in problem formulation:
1. An integral (a form of functional) type constraint exists.
2. Two variable functions, x(t) and y(t), which need to be found.
3. Maximization problem can simply be made into a minimization problem by 

changing the sign.

Equality -
constrained 
calculus of 
variations 
problem!
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Shape of a hanging chain

Equality-
constrained 
calculus of 
variations 
problem 
with one 
variable 
function.

What shape does a chain held at its ends 
take when left freely under gravity?
It tries to minimize its potential energy by 
coming down as much as it could.g

 

 

2

( )
0 0

2

0

Min 1

Subject to

1 0

Data : , (0) 0, , ( ) , ,

h h

y x

h

PE gy ds gy y dx

y dx L

L y h y h v g

 



  

  

 

 



x
y(x)

ds

(h,v)

r =
Mass per unit 
length of the 
chain
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Chatterjee problem: maximum enclosed area of a 
given perimeter with an inequality constraint

A farmer is free to choose a field with a given 
length of fence bounded by a river and three 
roads as shown in the figure on the left.
What should be the curve to maximize the 
enclosed area?

Posed by Prof. Anindya Chatterjee, IIT-
Kanpur

Min
y(x )

- A = - y
0

h

ò dx

Subject to

1+ ¢y
2( )dx

0

h

ò - L = 0

y(x)- r(x) £ 0

Data : L, y(0) = v1, y(h) = v2

N
ew

 featu
re:

A
n

 in
eq

u
ality

co
n

strain
t

v1

v2

h(0,0)

r(x)

y(x)
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Geometry and calculus of variations
There are many problems in geometry that relate to calculus of 
variations.

They pertain to minimal curves and surfaces.

Minimal curves
◦ Geodesics

◦ Maximum enclosing area for a givenWe will consider a few of them

◦ perimeter length

◦ Chains hanging in a force field

◦ Etc.

Minimal surfaces
◦ Minimum surface of revolution

◦ Surfaces of least area enclosed by a given boundary

◦ Etc. 
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Minimum surface of revolution of a curve

 

2

1

2

1

2

( )
0

2

1 1 1 2 2 2

Min 2 2 1

Subject to

1 0

Data : , , ( ) , , ( )

xL

y x
x

x

x

S y ds y y dx

y dx L

L x y x y x y x y

    

  

 

 



What shape?
Here is a problem that looks exactly 
like the hanging chain problem as 
far as mathematical formulation is 
concerned.
So, don’t you expect the solution to 
be the same as well?

Given end points (x1,y1) and 
(x2,y2), find the curve which when 
rotated about the x-axis will have 
least surface of revolution.
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Soap films solve a calculus of variations problem!

http://www.math.hmc.edu/~jacobsen/demolab/soapfilm.html

Take an easily bendable 
wire and make a loop or 
even multiple loops with 
it. Dip it in soap water and 
watch the shape of the 
soap film that forms. 

Soap films want to 
minimize the surface 
tension and hence take up 
the surface of least area as 
they attach to the 
boundary of the wire.
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Plateau’s problem of least surface area for a given 
boundary curve in 3D (simpler version)

z

y
x

3D curve 
Surface

2D area = 
projection of 
the surface, 
z(x,y)

22

( , )
Min 1

Data :

z x y
D

z z
S dx dy

x y

D

 
         

     
 


D

z(x,y) = surface (single-valued) 

New features:
The functional can be a double-integral.
The variable function can depend on two 
independent variables.
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Plateau’s problem of least surface area for a given 
boundary curve in 3D (more complex version)

z

y
x

What if the contour is 
irregular and it is 
multi-valued within 
the projected 2D 
domain D?
Posing and solving 
the problem become 
difficult.
Field’s medals have 
been awarded for this 
work! Douglas, Jesse (1931). "Solution of the problem of 

Plateau". Trans. Amer. Math. Soc. (Transactions of 
the American Mathematical Society, Vol. 33, No. 1) 
33 (1): 263–321.

http://fathom-the-
universe.tumblr.com/post/
55740943330/the-beauty-
of-minimal-surfaces-there-
are-many
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An optimal control problem: area maximization 
problem with optimal steering

Wind speed = w0

Helicopter speed speed = v0

a

A surveillance helicopter travelling at constant speed (vo) under the constant wind 
speed of (w0) needs to enclose maximum area by taking a closed path in a given 
time T. The optimization variable is the steering angle,        . The starting point is 
(x0,y0).

a(t)

Min
a (t )

- A = -
1

2
v0 sina (t) x0 +w0t + v0 cosa (t )dt

0

t

ò
ì
í
îï

ü
ý
þï

- v0 cos(t)+w0{ } y0 + v0 sina (t )dt
0

t

ò
ì
í
îï

ü
ý
þï

é

ë
ê
ê

ù

û
ú
ú
dt

0

T

ò

Data :w0 ,v0 , x0 , y0 ,T
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Study this functional…

Min
a (t )

- A = -
1

2
v0 sina (t) x0 +w0t + v0 cosa (t )dt

0

t

ò
ì
í
îï

ü
ý
þï

- v0 cos(t)+w0{ } y0 + v0 sina (t )dt
0

t

ò
ì
í
îï

ü
ý
þï

é

ë
ê
ê

ù

û
ú
ú
dt

0

T

ò

Data :w0 ,v0 , x0 , y0 ,T

The objective functional in this problem is interesting. Its 
new feature is that it is an integral but it has integrals to be 
evaluated within it and those integrals have the unknown 
variable function in their integrands.
The purpose of these examples is to let us appreciate the 
variety of functionals. We will study the formal notion of a 
functional in a later lecture.
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Mechanics and calculus of variations
There are three ways to write equations of statics and 
dynamics.

Two of these are related to calculus of variations.

◦ We will discuss them in this lecture and later too.

Structural optimization is essentially calculus of 
variations.
◦ What do we want to optimize in a structure?

◦ Stiffness, flexibility,  strength, weight, cost, 
manufacturability, natural frequency, mode shape, 
stability, buckling loads, contact stress, etc.

◦ All of these can be posed as objective function and 
constraints in the framework of calculus of variations.

We will consider a few problems and formulate them 
in this lecture.

Three 
views of 
mechanics

Statics Dynamics

A result of 
calculus of 
variation!

Force 
balance

F = ma

Calculus 
of 
variations

Principle 
of virtual 
work

D’Lambert 
principle

Minimum 
potential 
energy 
principle

Hamilton’s 
principle
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Static equilibrium of a beam

Method 1: Force and moment balance approach

EI
d 4w

dx4
= q(x)

This differential equation for the small transverse 
displacement w(x) of a beam under transverse load, q(x) is 
derived based on moment balance at a cross-section and 
the bending moment itself is computed based on force 
and moment balance.
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Static equilibrium of a beam

Method 2: Minimum potential energy principle

Min
w(x )

PE =
1

2
EI

d 2w

dx2

æ

èç
ö

ø÷

2

- qw
ì
í
ï

îï

ü
ý
ï

þï0

L

ò dx

Data : q(x),E, I

As an alternative to force/moment balance, we can simply 
minimize the potential energy (PE) with respect to the 
unknown variable function, w(x). 
The solution to this calculus of variations problem is the 
differential equation shown in the pervious slide.
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Static equilibrium of a beam

Method 3: Principle of virtual work

EI
d2w

dx2

æ

èç
ö

ø÷
d2dw

dx2

æ

èç
ö

ø÷
0

L

ò dx = q dw dx
0

L

ò

As the second alternative to force/moment balance, we can simply solve 
this equation that is valid for any kinematically admissible function,  

.
This statement is a consequence of the minimization of the potential 
energy functional of the previous slide.
But this is an independent way of stating static equilibrium!

For all kinematically admissible              .dw(x)

dw(x)

Internal virtual work = external virtual work
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Static equilibrium of a beam
Now, we know three independent ways of writing conditions for static 
equilibrium.

Method 1: Force/moment balance approach
◦ The differential equation with boundary conditions

◦ Called the strong form

Method 2: Principle of minimum potential energy (calculus of variations)
◦ All we need to know is an expression for the potential energy.

◦ The boundary conditions will emerge out of this statement.

Method 3: Principle of virtual work 
◦ An intermediate result of calculus of variations

◦ Called also the weak form

◦ Notice that the highest order derivative of the unknown function is lower here as compared to 
the one in the strong form.

We will discuss details of Methods 2 and 3 in later lectures.
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Understand the three methods with a simple 
spring.

k

F

D

x

= displacement (stretch) of the spring at equilibrium

Method 1
Force equilibrium

Method 2
Minimum potential energy

Method 3
Principle of virtual work

kx = F
21

Min
2

0

x
PE kx Fx

PE
kx F

x

 


  



kx d x = F d x

Internal 
force = 
external 
force

Internal 
virtual work 
= external 
virtual work

Since there is just one 
scalar variable x, it is a 
finite-variable 
optimization here and 
NOT calculus of 
variations.
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Static equilibrium of a general elastic body

Method 1
Force equilibrium

Method 2
Minimum potential 

energy

Method 3
Principle of virtual 

work

Ñ× D:e( )+ b = 0 e =
1

2
Ñu +ÑuT( )where

e :D :de( ) dW =
W

ò b ×du( ) dW =
W

ò We will 
discuss the 
notation and 
derivations in 
later lectures.
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Contact problems in elasticity: beam

Min
w(x )

PE =
1

2
EI

d 2w

dx2

æ

èç
ö

ø÷

2

- qw
ì
í
ï

îï

ü
ý
ï

þï0

L

ò dx

Subject to

w(x)- g(x) £ 0

Data : q(x),E, I
g(x)

q(x)

= gap function

Calculus of variations problem, in the framework of minimum 
potential energy principle, can easily account for contact 
conditions, as shown here.
Just an inequality constraint! 
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Vibrating string: Hamilton’s principle

A taut vibration string with tension, T.
Length = L; mass per unit length = 

T
¶2w

¶x2
= r

¶2w

¶t 2

 

Extremize
w(x,t )

H =
1

2
rw2 -T ¢w

2( ) dx dt
0

L

ò
t1

t2

ò

r

Equation of motion obtained using force-balance.

Calculus of variations 
statement: Hamilton’s 
principle

Notice that it is not minimization or maximization; it is simply 
extremization of a functional; also notice that the variable function 
depends on space variable x and time variable t.
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Equation of motion of a beam

Extremize
w(x,t )

H =
1

2

1

2
r

¶w

¶t

æ

èç
ö

ø÷

2

-
1

2
EI

d2w

dx2

æ

èç
ö

ø÷

2

+ qw
ì
í
ï

îï

ü
ý
ï

þï0

L

ò dx dt
t1

t2

ò

r
d2w

dt 2
+ EI

d 4w

dx4
= q(x) Equation of motion obtained using 

force-balance.

Calculus of variations statement: Hamilton’s 
principle

Which function w(x,t) will extremize H, the 
Hamiltonian?
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Mechanics and calculus of variations
There are three ways to write equations of statics 
and dynamics.

Two of these are related to calculus of variations.

◦ We will discuss them in this lecture and later 
too.

Structural optimization is essentially calculus of 
variations.
◦ What do we want to optimize in a structure?

◦ Stiffness, flexibility,  strength, weight, cost, 
manufacturability, natural frequency, mode shape, 
stability, buckling loads, contact stress, etc.

◦ All of these can be posed as objective function and 
constraints in the framework of calculus of 
variations.

We will consider a few problems and formulate 
them in this lecture.

Three views 
of mechanics Statics Dynamics

A result of 
calculus of 
variation!

Force 
balance

F = ma

Calculus of 
variations

Principle 
of virtual 
work

D’Lambert 
principle

Minimum 
potential 
energy 
principle

Hamilton’s 
principle
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Objectives and constraints in structural optimization

Weight

Stiffness

Strength

Flexibility

Cost

Stability

Buckling load

Natural frequency

Mode shape

Dynamic response

Contact stress

Etc.

Any of these can be the objective 
function or be part of a 
constraint.

Variable functions, the design 
variables, will be related shape and 
size; and topology (how many holes 
are there?)
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Structural optimization of a beam

Min
b(x )

SE =
1

2

Ebd 3

12

d 2w

dx2

æ

èç
ö

ø÷

2ì
í
ï

îï

ü
ý
ï

þï0

L

ò dx

Subject to

d 2

dx2
Ebd 3 d

2w

dx2

æ

èç
ö

ø÷
+ q = 0

bd dx
0

L

ò -V * £ 0

Data : L,q(x),d,V *,E

Minimize the strain energy of the beam for an upper bound on the 
volume of material.

The less the strain energy, the stiffer 
the beam.
The breadth of the beam is the design 
variable.
The displacement of the beam (w(x)) is 
the state variable.

The governing equation (the 
equilibrium equation) for the state 
variable.

The volume constraint is an 
inequality.

Data constitutes the known quantities.

This will be the 
typical structure 
of any 
structural 
optimization 
problem.
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Min-max of stress: design for a strong beam

Min
b(x )

Max
x

s =
1

2
Ed ¢¢w

æ

èç
ö

ø÷

Subject to

d 2

dx2
Ebd 3 d

2w

dx2

æ

èç
ö

ø÷
+ q = 0

bd dx
0

L

ò -V * £ 0

Data : L,q(x),d,V *,E

Minimize the maximum stress for an upper bound on the volume of 
material.

New feature in the formulation:
The functional has another 
maximization problem in it. 
This is a min-max problem.
Note that minimization and 
maximization of the same 
quantity is with respect to two 
different variables.
They are not uncommon in 
structural optimization.
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Electro-thermal-compliant actuator design

Min
r (x,y)

-uout( )

Subject to

t ÑTV ke
W

ò ÑTVv dW = 0

t ÑTT kt
W

ò ÑTTv dW - t ÑTV ke
W

ò ÑTV dW = 0

t e TEev - 1 1 aT{ }Eev( )
W

ò dW

t dW
W

ò -V * £ 0

Data : W,V *,ke = ke0r
h ,kt = kt 0r

h ,a = a 0r
h ,E = E rh

New features in the 
formulation:
The functional is 
simply one variable, 
the displacement at a 
point.
There are three 
governing equations 
pertaining to electrical, 
thermal, and elastic 
problems.
There are six state 

variables, V, Vv, T, Tv, 

u, uv.
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Features of calculus of variations problems
There can be constraints which are functionals or functions.

Constraints can be equalities are inequalities.

Objective functions are always functionals.

A functional can be of many forms.
◦ Just an integral

◦ Ratio of integrals

◦ Integral with another integral inside it

◦ Maximum or a minimum of a function

◦ Etc.

You have now seen what a functional is, in many of its forms. 
We will learn about them formally.
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The end note
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Structural optimization problems are essentially calculus of variations 
problems.

Many problems in geometry can be posed as calculus of variations 
problems.
Curves of least length and surfaces of least area are popular.

Functionals can 
be… 

Mechanics problems can be posed in three different ways;
Two of them are directly under the purview of calculus of variations.

Integrals
Integrals within an integral
Ratio of two integrals
Min or max of a function
Can depend on more than one variable 
function
Can involve more than one 
independent variable
Can depend on space and time 
variables

Constraints can 
be equalities 
and inequalities 
in calculus of 
variations too. 
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