Lecture 10b

Formulations of Calculus of Variations Problems in Geometry and Mechanics

ME260 Indian Institute of Science
Structural Optimization: Size, Shape, and Topology
G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bengaluru
suresh@iisc.ac.in

Outline of the lecture

We will discuss some geometry problems that can be cast as problems of calculus of variations.
We will also discuss the role of calculus of variations in mechanics and structural optimization.
What we will learn:
What kinds of problems belong to calculus of variations?

- How do we formulate calculus of variations problems?
- What is the connection between mechanics and calculus of variations?
- What is the connection between structural optimization and calculus of variations?
- How does a functional look like?

Geometry and calculus of variations

There are many problems in geometry that relate to calculus of variations.

They pertain to minimal curves and surfaces.
Minimal curves
Geodesics
Maximum enclosing area for a given perimeter
Chains hanging in a force field
Etc.
Minimal surfaces
Minimum surface of revolution
Surfaces of least area enclosed by a given boundary
Etc.

Mechanics and calculus of variations

There are three ways to write equations of statics and dynamics.

Two of these are related to calculus of variations.
We will discuss them in this lecture and later too.
Structural optimization is essentially calculus of variations.

What do we want to optimize in a structure?
Stiffness, flexibility, strength, weight, cost, manufacturability, natural frequency, mode shape, stability, buckling loads, contact stress, etc.
All of these can be posed as objective function and constraints in the framework of calculus of variations.

We will consider a few problems and formulate them in this lecture.

Three views of mechanics	Statics	Dynamics
Final result of calculus of variation!	Force balance	$\mathrm{F}=\mathrm{ma}$
	Principle of virtual work	D'Lambert principle
An intermedia te result of calculus of variations		
Calculus of variations	Minimum potential energy principle	Hamilton's principle

Geometry and calculus of variations

There are many problems in geometry that relate to calculus of variations.

They pertain to minimal curves and surfaces.
Minimal curves
Geodesics
Maximum enclosing area for a given perimeter
Chains hanging in a force field
Etc.

Minimal surfaces

- Minimum surface of revolution

Surfaces of least area enclosed by a given boundary

- Etc.

Curve of least distance between two points in a plane.

You are given two points in a flat plane. You can draw many, many curves that connect the two points. Of all those curves, which one has the least length?

The answer is obvious: it is a straight line joining the two points.
Pretend that you do not know the answer or someone is not convinced about it.
How will you pose this as a problem whose solution gives you a convincing proof? Here is how:

$$
\int_{\left(x_{1}, y_{1}\right)}^{\substack{x}} \quad L=\int d s=\int \sqrt{d x^{2}+d y^{2}}=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} d x
$$

We take a small segment $d s$

Geodesic in a plane

Geodesic:

- Curve of least distance between two given points.

Geodesic on a sphere

A spherical surface can be described in parametric form by azimuthal and elevation angles and radius R.
$x=R \cos \quad \cos \quad$ Then, we can write the differential quantities as...
$y=R \cos \sin \quad d x=R(\sin \cos d \cos \sin d)$
$z=R \sin$

$$
\begin{aligned}
& d y=R(\sin \sin d+\cos \cos d) \\
& d z=R \cos d
\end{aligned}
$$

$d s^{2}=d x^{2}+d y^{2}+d z^{2}=R^{2}\left(\begin{array}{lllll}\sin ^{2} & \cos ^{2} & d^{2}+\cos ^{2} & \sin ^{2} & d^{2}+\sin \cos \cos \sin d d \\ +\sin ^{2} & \sin ^{2} & d^{2}+\cos ^{2} & \cos ^{2} & d^{2}\end{array} \sin \cos \cos \sin d d+\cos ^{2} d^{2}\right)$
$=R^{2}\left(d^{2}+\cos ^{2} d^{2}\right)$
Therefore, $d s=R \sqrt{\left(d^{2}+\cos ^{2} d^{2}\right)}$

Geodesic on a sphere (contd.)

$d s=R \sqrt{\left(d^{2}+\cos ^{2} d^{2}\right)}$

$$
L=\int d s=\int R \sqrt{\left(d^{2}+\cos ^{2} d^{2}\right)}=\int_{1}^{2} R \sqrt{\left(1+\cos ^{2}\left(\frac{d}{d}\right)^{2}\right)} d
$$

Here, we describe a curve on the sphere as ()

Thus, the geodesic problem on a sphere becomes...

Data: ${ }_{1},{ }_{2}, \quad\left({ }_{1}\right)={ }_{1}, \quad\left({ }_{2}\right)={ }_{2}$

Geodesic on any given surface

Then, we can write the differential quantities as...

$$
\begin{aligned}
& d x=\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v \\
& d y=\frac{\partial y}{\partial u} d u+\frac{\partial y}{\partial v} d v \\
& d z=\frac{\partial z}{\partial u} d u+\frac{\partial z}{\partial v} d v
\end{aligned}
$$

Now, the length of a curve on the surface, given in its parametric form, $v(u)$, is given by

Any surface can be described in parametric,,$^{\prime} L=\int d s=\int \sqrt{d x^{2}+d y^{2}+d z^{2}}=\int_{u_{1}}^{u_{2}} \sqrt{\left(P+2 Q \frac{d v}{d u}+R\left(\frac{d v}{d u}\right)^{2}\right)} d u$ form using u and v

$$
\begin{aligned}
& x=x(u, v) \\
& y=y(u, v) \\
& z=z(u, v)
\end{aligned}
$$

$$
\begin{aligned}
& P=(x / u)^{2}+(y / u)^{2}+(z / u)^{2} ; R=(x / v)^{2}+(y / v)^{2}+(z / v)^{2} ; \\
& Q=(x / u)(x / v)+(y / u)(y / v)+(z / u)(z / v)
\end{aligned}
$$

Geodesic on any surface (contd.)

This is the general form of the geodesic problem for any surface specified in parametric form.
$\operatorname{Min}_{v(u)} L=\int_{u_{1}}^{u_{2}} \sqrt{\left(P+2 Q \frac{d v}{d u}+R\left(\frac{d v}{d u}\right)^{2}\right)} d u$
Data: $u_{1}, u_{2}, v\left(u_{1}\right)=v_{1}, v\left(u_{2}\right)=v_{2}$

$$
\begin{aligned}
& x(u, v), y(u, v), z(u, v) \\
& P=(\partial x / \partial u)^{2}+(\partial y / \partial u)^{2}+(\partial z / \partial u)^{2} ; R=(\partial x / \partial v)^{2}+(\partial y / \partial v)^{2}+(\partial z / \partial v)^{2} ; \\
& Q=(\partial x / \partial u)(\partial x / \partial v)+(\partial y / \partial u)(\partial y / \partial v)+(\partial z / \partial u)(\partial z / \partial v)
\end{aligned}
$$

Now, with a constraint.

Geodesic problems have an objective function, which is an integral. The integral depended on the derivative of the variable function.
Now, we will consider a problem with a constraint that is also an integral of the variable function.
Such problems where the constraint is also an integral, we call them isoperimetric problems.
By the way, the expressions in the integral form are called functionals. But functionals need not be of only integral form. More later....

Queen Dido's "isoperimetric" problem

If someone gave you a closed loop of a chain of length L and asked you to take as much land you can enclose with it, as Dido, the Queen of Carthage (present day Tunisia) did, what shape would you put that chain on land? (provided you want to have maximum area of land to own)

Constant perimeter and hence it is called an isoperimetric problem.

Maximum area enclosed by a curve of given perimeter.

$$
\text { Notation } \begin{aligned}
\dot{x} & =\frac{d x}{d t} \\
\dot{y} & =\frac{d y}{d t}
\end{aligned}
$$

It is convenient to use parametric representation of a closed curve because explicit form $y(x)$ may need to be multivalued. Let $t=0$ to L, be the parameter. Let the curve be given by $x(t)$ and $y(t)$.
苞 $L=\int_{0}^{L}\left\{\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}\right\} d t=\int_{0}^{L}\left(\sqrt{\dot{x}^{2}+\dot{y}^{2}}\right) d t$

Enclosed area $=\int_{0}^{L} \frac{1}{2}\left(x(t) \frac{d y}{d t}-y(t) \frac{d x}{d t}\right) d t=\int_{0}^{L} \frac{1}{2}(x \dot{y}-y \dot{x}) d t$

Maximum enclosed area with a curve of given

 perimeter.

$$
\operatorname{Min}_{x(t), y(t)}-A=\int_{0}^{L} \frac{1}{2}(y \dot{x}-x \dot{y}) d t
$$

Subject to

$$
\int_{0}^{L}\left(\sqrt{\dot{x}^{2}+\dot{y}^{2}}\right) d t-L=0
$$

Equality constrained calculus of variations problem!

New features in problem formulation:

1. An integral (a form of functional) type constraint exists.
2. Two variable functions, $x(t)$ and $y(t)$, which need to be found.
3. Maximization problem can simply be made into a minimization problem by changing the sign.

Shape of a hanging chain

What shape does a chain held at its ends take when left freely under gravity?
It tries to minimize its potential energy by coming down as much as it could.

Equalityconstrained calculus of variations problem with one variable function.

Chatterjee problem: maximum enclosed area of a given perimeter with an inequality constraint

Posed by Prof. Anindya Chatterjee, IITKanpur

A farmer is free to choose a field with a given length of fence bounded by a river and three roads as shown in the figure on the left. What should be the curve to maximize the enclosed area?
$\operatorname{Min}_{y(x)} A={ }_{0}^{h} y d x$
Subject to
${ }_{n}^{h}\left(\sqrt{1+y^{2}}\right) d x \quad L=0$
0
$y(x) r(x) \quad 0$
Data $: L, y(0)=v_{1}, y(h)=v_{2}$

Geometry and calculus of variations

There are many problems in geometry that relate to calculus of variations.

They pertain to minimal curves and surfaces.
Minimal curves

- Geodesics
- Maximum enclosing area for a givenWe will consider a few of them
- perimeter length
- Chains hanging in a force field
- Etc.

Minimal surfaces

- Minimum surface of revolution
- Surfaces of least area enclosed by a given boundary
- Etc.

Minimum surface of revolution of a curve

Given end points (x_{l}, y_{l}) and $\left(x_{2}, y_{2}\right)$, find the curve which when rotated about the x-axis will have least surface of revolution.

Here is a problem that looks exactly like the hanging chain problem as far as mathematical formulation is concerned.
So, don't you expect the solution to be the same as well?
$\operatorname{Min}_{y(x)} S=\int_{0}^{L} 2 \pi y d s=\int_{x_{1}}^{x_{2}} 2 \pi y \sqrt{1+y^{\prime 2}} d x$
Subject to

$$
\int_{x_{1}}^{x_{2}}\left(\sqrt{1+y^{\prime 2}}\right) d x-L=0
$$

Data : $L, x_{1}, y\left(x_{1}\right)=y_{1}, x_{2}, y\left(x_{2}\right)=y_{2}$

Soap films solve a calculus of variations problem!

Take an easily bendable wire and make a loop or even multiple loops with it. Dip it in soap water and watch the shape of the soap film that forms.

Soap films want to minimize the surfact tension and hence ta the surface of least area as they attach to the boundary of the wire.
http://www.math.hmc.edu/~jacobsen/demolab/soapfilm.htm

Plateau's problem of least surface area for a given boundary curve in 3D (more complex version)

What if the contour is irregular and it is multi-valued within the projected 2D domain D ?
Posing and solving the problem become difficult.
Field's medals have been awarded for this

http://fathom-theuniverse.tumblr.com/post/ 55740943330/the-beauty-of-minimal-surfaces-there-are-many WOrk! Douglas, Jesse (1931). "Solution of the problem of Plateau". Trans. Amer. Math. Soc. (Transactions of the American Mathematical Society, Vol. 33, No. 1) 33 (1): 263-321.

An optimal control problem: area maximization problem with optimal steering

Helicopter speed speed $=v_{0}$

$$
\longrightarrow \text { Wind speed }=w_{0}
$$

A surveillance helicopter travelling at constant speed $\left(v_{o}\right)$ under the constant wind speed of $\left(w_{0}\right)$ needs to enclose maximum area by taking a closed path in a given time T. The optimization variable is the steering angle, (t). The starting point is $\left(x_{0}, y_{0}\right)$.
$\operatorname{Min}_{(t)} A=\frac{1}{2} \int_{0}^{T}\left[v_{0} \sin (t)\left\{x_{0}+w_{0} t+v_{0} \int_{0}^{t} \cos () d\right\}\left\{v_{0} \cos (t)+w_{0}\right\}\left\{y_{0}+v_{0} \int_{0}^{t} \sin () d\right\} d t\right.$
Data: $w_{0}, v_{0}, x_{0}, y_{0}, T$

Study this functional...

$\operatorname{Min}_{(t)} A=\frac{1}{2} \int_{0}^{T}\left[v_{0} \sin (t)\left\{x_{0}+w_{0} t+v_{0} \int_{0}^{t} \cos () d\right\}\left\{v_{0} \cos (t)+w_{0}\right\}\left\{y_{0}+v_{0}^{t} \int_{0}^{t} \sin () d\right\}\right] d t$
Data: $w_{0}, v_{0}, x_{0}, y_{0}, T$
The objective functional in this problem is interesting. Its new feature is that it is an integral but it has integrals to be evaluated within it and those integrals have the unknown variable function in their integrands.
The purpose of these examples is to let us appreciate the variety of functionals. We will study the formal notion of a functional in a later lecture.

Mechanics and calculus of variations

There are three ways to write equations of statics and dynamics.

Two of these are related to calculus of variations.

- We will discuss them in this lecture and later too.

Structural optimization is essentially calculus of variations.

What do we want to optimize in a structure?
Stiffness, flexibility, strength, weight, cost, manufacturability, natural frequency, mode shape, stability, buckling loads, contact stress, etc.
All of these can be posed as objective function and constraints in the framework of calculus of variations.

We will consider a few problems and formulate them in this lecture.

Three views of mechanics	Statics	Dynamics
A result of calculus of variation!	Force balance	$\mathrm{F}=$ ma
	Principle of virtual work	D'Lambert principle
Calculus of variations	Minimum potential energy principle	Hamilton's principle

Static equilibrium of a beam

Method 1: Force and moment balance approach

$$
E I \frac{d^{4} w}{d x^{4}}=q(x)
$$

This differential equation for the small transverse displacement $w(x)$ of a beam under transverse load, $q(x)$ is derived based on moment balance at a cross-section and the bending moment itself is computed based on force and moment balance.

Static equilibrium of a beam

Method 2: Minimum potential energy principle
$\operatorname{Min}_{w(x)} P E=\int_{0}^{L}\left\{\frac{1}{2} E I\left(\frac{d^{2} w}{d x^{2}}\right)^{2} \quad q w\right\} d x$
Data: $q(x), E, I$
As an alternative to force/moment balance, we can simply minimize the potential energy $(P E)$ with respect to the unknown variable function, $w(x)$.
The solution to this calculus of variations problem is the differential equation shown in the pervious slide.

Static equilibrium of a beam

Method 3: Principle of virtual work

$$
\int_{0}^{L} E I\left(\frac{d^{2} w}{d x^{2}}\right)\left(\frac{d^{2} w}{d x^{2}}\right) d x=\int_{0}^{L} q \quad w d x \quad \text { For all kinematically admissible } \quad w(x)
$$

Internal virtual work = external virtual work
As the second alternative to force/moment balance, we can simply solve this equation that is valid for any kinematically admissible function, $w(x)$.
This statement is a consequence of the minimization of the potential energy functional of the previous slide.
But this is an independent way of stating static equilibrium!

Static equilibrium of a beam

Now, we know three independent ways of writing conditions for static equilibrium.

Method 1: Force/moment balance approach
The differential equation with boundary conditions
Called the strong form
Method 2: Principle of minimum potential energy (calculus of variations)
All we need to know is an expression for the potential energy.
The boundary conditions will emerge out of this statement.
Method 3: Principle of virtual work
An intermediate result of calculus of variations
Called also the weak form
Notice that the highest order derivative of the unknown function is lower here as compared to the one in the strong form.

We will discuss details of Methods 2 and 3 in later lectures.

Understand the three methods with a simple spring.
 $=$ displacement (stretch) of the spring at equilibrium
 Since there is just one scalar variable x, it is a finite-variable
 optimization here and NOT calculus of variations.
 Method 3
 Principle of virtual work
 Internal virtual work
 = external virtual work

 $$
k x \quad x=F \quad x
$$

 $k x \quad x=F \quad x$

 $k x \quad x=F \quad x$}
Static equilibrium of a general elastic body

Method 1
Force equilibrium

Method 2
Minimum potential energy

$$
\nabla \cdot(\mathbf{D}:)+\mathbf{b}=0 \quad \text { where } \quad=\frac{1}{2}\left(\nabla u+\nabla u^{T}\right)
$$

$$
\operatorname{Min}_{\mathbf{u}} P E=\int_{\Omega}\left(\frac{1}{2} \varepsilon: \mathbf{D}: \varepsilon-\mathbf{b} \cdot \mathbf{u}\right) d \Omega
$$

Data: $\mathbf{D , b}, \Omega$

Method 3
Principle of virtual work

$$
\int(: \mathbf{D}:) d=\int(\mathbf{b} \cdot \mathbf{u}) d=
$$

We will discuss the notation and derivations in later lectures.

Contact problems in elasticity: beam

$\operatorname{Min}_{w(x)} P E=\int_{0}^{L}\left\{\frac{1}{2} E I\left(\frac{d^{2} w}{d x^{2}}\right)^{2} q w\right\} d x$
Subject to

$$
w(x) \quad g(x) \leq 0
$$

Data : $q(x), E, I$

Calculus of variations problem, in the framework of minimum potential energy principle, can easily account for contact conditions, as shown here.
Just an inequality constraint!

Vibrating string: Hamilton's principle

A taut vibration string with tension, T. Length $=$ L; mass per unit length $=$
$T \frac{{ }^{2} w}{x^{2}}=\frac{{ }^{2} w}{t^{2}} \quad$ Equation of motion obtained using force-balance.

Calculus of variations statement: Hamilton's principle
Notice that it is not minimization or maximization; it is simply extremization of a functional; also notice that the variable function depends on space variable x and time variable t.

Equation of motion of a beam

$$
\frac{d^{2} w}{d t^{2}}+E I \frac{d^{4} w}{d x^{4}}=q(x)
$$

Equation of motion obtained using force-balance.
$\underset{w(x, t)}{\operatorname{Extremize}} H=\frac{1}{2} \int_{t_{1}}^{t_{2}} \int_{0}^{L}\left\{\frac{1}{2}\left(\frac{\partial w}{\partial t}\right)^{2} \frac{1}{2} E I\left(\frac{d^{2} w}{d x^{2}}\right)^{2}+q w\right\} d x d t$

Calculus of variations statement: Hamilton's principle

Which function $w(x, t)$ will extremize H, the Hamiltonian?

Mechanics and calculus of variations

There are three ways to write equations of statics and dynamics.

Two of these are related to calculus of variations. We will discuss them in this lecture and later too.

Structural optimization is essentially calculus of variations.

What do we want to optimize in a structure?
Stiffness, flexibility, strength, weight, cost, manufacturability, natural frequency, mode shape, stability, buckling loads, contact stress, etc.
All of these can be posed as objective function and constraints in the framework of calculus of variations.

We will consider a few problems and formulate them in this lecture.
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Three views } \\
\text { of mechanics }\end{array} & \text { Statics }\end{array}
$$ \quad $$
\begin{array}{l}\text { Dynamics } \\
\hline \begin{array}{l}\text { A result of } \\
\text { calculus of } \\
\text { variation! }\end{array} \\
\begin{array}{l}\text { Force } \\
\text { balance }\end{array} \\
\hline \begin{array}{l}\text { Calculus of } \\
\text { variations }\end{array} \\
\begin{array}{l}\text { Principle } \\
\text { of virtual } \\
\text { work }\end{array} \\
\hline\end{array}
$$ \begin{array}{l}D'Lambert

principle\end{array}\right\}\)| Minimum |
| :--- |
| potential |
| energy |
| principle |\quad| Hamilton's |
| :--- |

Objectives and constraints in structural optimization

Weight
Stiffness
Strength
Flexibility
Cost
Stability
Buckling load
Natural frequency
Mode shape

Dynamic response
Contact stress
Etc.

Any of these can be the objective function or be part of a constraint.

Variable functions, the design variables, will be related shape and size; and topology (how many holes are there?)

Structural optimization of a beam

Minimize the strain energy of the beam for an upper bound on the volume of material.
$\operatorname{Min}_{b(x)} S E=\int_{0}^{L}\left\{\frac{1}{2} \frac{E b d^{3}}{12}\left(\frac{d^{2} w}{d x^{2}}\right)^{2}\right\} d x$
Subject to
The less the strain energy, the stiffer the beam.
The breadth of the beam is the design variable.
The displacement of the beam $(w(x))$ is
$\frac{d^{2}}{d x^{2}}\left(E b d^{3} \frac{d^{2} w}{d x^{2}}\right)+q=0 \begin{aligned} & \text { the state variable. } \\ & \begin{array}{l}\text { Theverning equation (the } \\ \text { equilibrium equation) for the state } \\ \text { variable }\end{array}\end{aligned}$ $\int_{0}^{L} b d d x \quad V^{*} \leq 0 \quad \begin{aligned} & \text { The volume constraint is an } \\ & \text { inequality. }\end{aligned}$
Data : $L, q(x), d, V^{*}, E \quad$ Data constitutes the known quantities.

This will be the typical structure of any structural optimization problem.

Min-max of stress: design for a strong beam Minimize the maximum stress for an upper bound on the volume of material.

$$
\operatorname{Min}_{b(x)} \operatorname{Max}_{x}\left(=\frac{1}{2} E d w^{\prime \prime}\right)
$$

Subject to

$$
\left.\begin{array}{ll}
\operatorname{Min}_{b(x)} \operatorname{Max}_{x}\left(=\frac{1}{2} E d w^{\prime \prime}\right) & \begin{array}{l}
\text { New feature in the formulation: } \\
\text { The functional has another }
\end{array} \\
\text { Subject to } & \text { maximization problem in it. } \\
\text { This is a min-max problem. }
\end{array}\right] \begin{aligned}
& d^{2} \\
& d x^{2} \\
& \left.\int_{0}^{L} b d d^{3} \frac{d^{2} w}{d x^{2}}\right)+q=0 \begin{array}{l}
\text { Note that minimization and } \\
\text { maximization of the same }
\end{array} \\
& \int_{0}^{L} b d x V^{*} \leq 0 \\
& \text { quantity is with respect to two } \\
& \text { different variables. } \\
& \text { They are not uncommon in } \\
& \text { structural optimization. }
\end{aligned}
$$

Electro-thermal-compliant actuator design

$\operatorname{Min}_{(x, y)}\left(u_{\text {out }}\right)$
Subject to

$$
\begin{aligned}
& \int t \nabla^{T} V k_{e} \nabla^{T} V_{v} d=0 \\
& \int t \nabla^{T} T k_{t} \nabla^{T} T_{v} d \quad \int t \nabla^{T} V k_{e} \nabla^{T} V d=0 \\
& \int t\left({ }^{T} \mathbf{E}_{v} \quad\left\{\begin{array}{lll}
1 & 1 & T
\end{array}\right\} \mathbf{E}_{v}\right) d \\
& \int t d \quad V^{*} \leq 0
\end{aligned}
$$

Data: , $V^{*}, k_{e}=k_{e 0}, k_{t}=k_{t 0},=0 \quad, \mathbf{E}=\mathbf{E}$

New features in the formulation:
The functional is simply one variable, the displacement at a point.
There are three governing equations pertaining to electrical, thermal, and elastic problems.
There are six state variables, V, V_{v}, T, T_{v}
$\boldsymbol{u}, \boldsymbol{u}_{v}$.

Features of calculus of variations problems

There can be constraints which are functionals or functions.
Constraints can be equalities are inequalities.
Objective functions are always functionals.
A functional can be of many forms.
Just an integral
Ratio of integrals

- Integral with another integral inside it
- Maximum or a minimum of a function
- Etc.

You have now seen what a functional is, in many of its forms. We will learn about them formally.

rne eno note

