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Mathematical Preliminaries to Calculus of Variations  
 

In finite-variable optimization (i.e., ordinary optimization that you most 

likely know as minimization or maximization of functions), we try to find 

the extremizing (a term that covers both minimizing and maximizing) 

values of a finite number of scalar variables to get the extremum of a 

function that is expressed in terms of those variables. That is, we deal 

with functions of the form    f (x
1
,x

2
, ,x

n
) that need to be extremized by 

finding the extremizing values of    x1
,x

2
, ,x

n
. Calculus of variations also 

deals with minimization and maximization but what we extremize are not 

functions but functionals. 

The concept of a functional is crucial to calculus of variations as is a 

function for ordinary calculus of finite number of scalar variables. The 

difference between a function and a functional is subtle and yet profound. 
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Let us first review the notion of a function in ordinary calculus so that we 

can understand how the functional is different from it. 

In this notes, for presenting mathematical formalisms, we will adopt a 

format that is different from what is usually followed in applied and 

engineering mathematics books. That is, instead of introducing a number 

of seemingly unconnected definitions and concepts first and then finally 

getting to what we really need, here, we will first define or introduce 

what we actually need and then explain or define the new terms as we 

encounter them. This takes the suspense out of the notation, definitions, 

and concepts as they are introduced. New terms are underlined and are 

immediately explained following their first occurrence. If anything is 

defined as it is first introduced, it is set in italics font. 

Because we want to understand the difference between a function and a 

functional, let us start off with their definitions. 
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Function 

“A rule which assigns a unique real (or complex) number to every x is 

said to define a real (or complex) function.” 

All is in plain English in the above definition of a function except that we 

need to say what   is. It is called the domain of the function. It is a non-

empty open set in    
N( N ). 

  
N  (or   

N ) is a set of real (or complex) numbers in N  dimensions. An 

element  (or   
N ) is denoted by 

   
x = x

1
,x

2
,x

3
, ,x

N{ }. 

While the notion of a set may be familiar to all those who may read this, 

the notion of an open set may be new to some. 

A set   S Ì N  is open if every point (or element) of S  is the center of an 

open ball lying entirely in S . 
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The open ball with center 
0x  and radius r  in   

N  is the set  

   
x Î N d

E
x

0
,x( ) < r{ }. 

 
1/ 2

2

1

, ( )
n

E i i

i

d x y x y


 
  
 
   is the Euclidean distance between 

   
x = x

1
,x

2
,x

3
, ,x

N{ } and 

 1 2 3, , ,..., Ny y y y y  both belonging to   
N . 

This is how we formally define a function. You can notice how many 

related concepts are needed to define such a simple thing as a function! 

One should try to relate to these concepts with one’s own prior 

understanding of what a function is. Let us now do this for a functional so 

that you can see how it is different so that it too becomes as natural and 

intuitive as a function is to you. A functional is sometimes loosely (and 

incorrectly) defined as a function of function(s). But that does not suffice 

for our purposes because it is subtler than that. 
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Functional 

“A functional is a particular case of an operator, in which    R( A) Î  or  .” 

Depending on whether it is real or complex, we define real or complex 

functionals, respectively. 

Are you wondering what ( )R A  is? Read on to find out. 

 

Operator 

A correspondence   ,  ,  A x y x X y Y    is called an operator from one 

metric space  X  into another metric space Y , if to each x X  there 

corresponds no more than one y Y .  

The set of all those x X  for which there exists a correspondence y Y  is 

called the domain of A and is denoted by  D A ; the set of all y  arising from 

x X  is called the range of A and is denoted by  R A . 
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Thus,     ;  ,  R A y Y y A x x X     

Note also that  R A  is the image of  D A  under the operator A. 

Now, what is a metric space? 

 

Metric space 

A metric space is a pair  ,X d  consisting of a set X  (of points or elements) 

together with a metric d , which a real valued function  ,d x y  defined for 

any two points ,x y X  and which satisfies the following four properties: 

 (i)      ,d x y                               (“non-negative”) 

 (ii)    , 0d x y   if and only if x y    (“zero metric”) 

 (iii)     , ,d x y d y x                    (“symmetry”) 

 (iv)       , , ,d x y d x z d z y    where , ,x y z X . (“triangular inequality”) 
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A metric is a real valued function     
d x, y( ),    x, y Î N  that satisfies the above 

four properties. 

Let us look at some examples of metrics defined in   
N . 

 1.  ,  in d x y x y   

 2. 
   
d x, y( ) =

1 for x ¹ y

0 for x = y

ì
í
î

 in  

 3. 
   
d x, y( ) = x - y = x

1
- y

1( )
2

+ x
2
- y

2( )
2

 in 2 

 4.    
d x, y( ) = x

1
- x

2
+ y

1
- y

2
   also in 2 

We can see that the same   has two different metrics—the first and 

second ones in the preceding list. Likewise, the third and fourth are two 

metrics for 2 . Thus, each real number set in N  dimensions can have a 

number of metrics and hence it can give rise to a number of different 

metric spaces.  
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The space X  we have used so far is good enough for ordinary calculus. 

But, in calculus of variations, our unknown is a function. So, we need a 

new set that is made up of functions. Such a thing is called a function space. 

Let us come to it from something more general than that. We call such a 

thing a vector space. Let us see what this is. First, note that the vector that 

we refer to here is not limited to what we usually know in analytical 

geometry and mechanics as something with a magnitude and a direction. 

 

Vector space  

A vector space over a field K  is a non-empty set X  of elements of any 

kind (called vectors) together with two algebraic operations called vector 

addition    and scalar multiplication    such that the following 10 

properties are true.  

1.  for all ,x y X x y X   .     “The set is closed under addition” 
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2. .x y y x                             “Commutative law for addition” 

3.    x y z x y z               “Associative law for addition” 

4. There exists an additive identity   such that  for all x x x x X        

5. There exists an additive inverse  such that x x x x       

6. For all ,  and all ,  x XK x X     “The set is closed under scalar 

multiplication”. 

7. 
   
For all a ÎK ,  and all x, yÎX , a xÅ y( ) = a x( )Å a y( ) 

8.               , ,    x x x K x X           

9.     x x    

10. There exists a multiplicative identity such that 
 1 ;        and 0x x x    
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Pardon the strange symbols that are used for addition and multiplication 

but that generality is needed so that we don’t think in terms of our prior 

notions of usual multiplications and additions. We use the usual symbols 

to define a field, a term we used above. 

 

A set of elements with two binary operators   and  is called a field if it 

satisfies the following ten properties: 

 

 
   

 

     

1.            ,

2.        , ,

3.    0 0          ,   "0 additive identity"

4.    0           "additive inverse"

a b b a a b K

a b c a b c a b c K

a a a a K

a a a a

   

     

     

     
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 

   

1 1

5.                                    "cummutative law"

6.   

7.    1 1

8.    1                     for all  except "0"

a b b a

a b c a b c

a a a

a a a a a K 

  

    

   

    

 

 
     

     

9.    

10.  

a b c a b a c

a b c a c b c

     

     
 

Based on the foregoing, we can understand a vector space as a special 

space of elements (called vectors as already noted) of which the functions 

that we consider are of just one type.  

Next, we consider normed vector spaces, which are simply the 

counterparts of metric spaces that are defined for normal Euclidean 

spaces such as   
N . 
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Normed vector space 

A normed vector space is a vector space on which a norm is defined. 

A norm defined on a vector space X  is a real-valued function from X  to  , 

i.e., :f X   whose value at x X  is denoted by  f x x   and has the 

following properties: 

 

(i)   0                      for all 

(ii)  0                      if and only if  

(iii)             ,   

(iv)       ,

x x X

x x

x x K x X

x y x y x y X



  

 

 

  

   

 

The above four properties may look trivial. If you think so, try to think of 

a norm for a certain vector space that satisfies these four properties. It is 

not as easy as you may think! Later, we will see some examples of norms 

for function spaces that we are concerned with in this course. 
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Let us understand more about function spaces. 

 

Function space  

A function space is simply a set of functions. We are interested in specific 

types of function spaces which are vector spaces. In other words, the 

“vectors” in such vector spaces are functions. Let us consider a few 

examples to understand what function spaces really are. 

1.    0 ,      , ;    max      
a t b

C a b a b K x x t
 

   

As shown above 0 C  is a function space of all continuous functions 

defined over the interval [ , ]a b . It is a normed vector space with the norm 

defined as shown. Does this norm satisfy the four properties? Please 

check for yourself. 
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2.  0

int ,      , ;    ( )      

b

a

C a b a b K x x t dt    

This represents another function space of all continuous functions over an 

interval. This too is a normed vector space but with a different norm. 

3.  0 2

int 2 ,      , ;    ( )      

b

a

C a b a b K x x t dt    has yet another norm and denotes 

one more function space that is a normed vector space. 

4. 
   
 C1 a,béë ùû       a,bÎK;    x = max

a£t£b
x t( ) + max

a£t£b
x t( )  

Here,  1 ,C a b  is a set of all continuous functions that are also 

differentiable once. Note how the norm is defined in this case. Does this 

norm satisfy the four properties? Check it out. 
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Let us now briefly mention some very important classes of function 

spaces that are widely used in functional analysis—a field of mathematical 

study of functionals. The functionals are of course our main interest here. 

 


