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First Variation of a Functional  
 

The derivative of a function being zero is a necessary condition for the 

extremum of that function in ordinary calculus. Let us now consider the 

equivalent of a derivative for functionals because it plays the same crucial 

role in calculus of variations as does the derivative of the ordinary calculus 

in minimization of functions. Let us begin with a simple but a very 

important concept called a Gateaux variation. 

 

Gateaux variation 
 

The functional  J f  is called the Gateaux variation of J  at f  when the 

limit that is defined as follows, exists. 
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   

0
(f; ) lim

J f h J x
J h








 
  where h  is any vector in a vector space (a 

function space for our purposes), . 

 

Let us look at the meaning of h  and   geometrically. Note that f,h . Now, 

since f  is the unknown function to be found so as to minimize (or 

maximize) a functional, we want to see what happens to the functional ( )J f  

when we perturb this function slightly. For this, we take another function 

h  and multiply it by a small number  . We add h  to f  and look at the 

value of ( )J f h . That is, we look at the perturbed value of the functional 

due to perturbation h . Symbolically, this is the shaded area shown in Fig. 

1 where the function f  is indicated by a thick solid line, h  by a thin solid 

line, and f h  by a thick dashed line. Next, we think of the situation of   

tending to zero. As 0  , we consider the limit of the shaded area divided 

by  . If this limit exists, such a limit is called the Gâteaux variation of ( )J f  
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at f  for an arbitrary but fixed vector h . Note that, we denote it as ( ; )J f h  

by including h  in defining Gateaux variation. 

 

 
Figure 1. Pictorial depiction of variation h  of a function f  
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Although the most important developments in calculus of variations 

happened in 17th and 18th centuries, this formalistic concept of variation was 

put forth by a French mathematician Gateaux at the end of 19th century. So, 

one can say that intuitive and creative thinking leads to new developments 

and rigorous thinking makes them mathematically sound and completely 

unambiguous. To reinforce our understanding of the Gateaux variation, let 

us relate it to the concept of a directional derivative in multi-variable 

calculus. 

 

A directional derivative of the function  1 2, ,........., nf x x x  denoted in a 

compact form as  h
f x , in the direction of a  unit vector h  is given by 

              
   

0
lim

f x h f x







 
. 



ME260: Lecture 11, Supplement C                   Structural Optimization; Size, Shape, and Topology 

IISc                          5  Ananthasuresh 
 

Here the “vector” is the usual notion of “mechanics vector” that you know 

and not the extended notion of a “vector” in a vector space. We are using 

the over-bar to indicate that the denoted quantity consists of several 

elements in an array as in a column (or row) vector. You know how to take 

the  derivative of a function  f x  with respect to any of its variables, say 

, 1ix i n  . It is simply a partial derivative of  f x  with respect to 
ix . You 

also know that this partial derivative indicates the rate of change of  f x  

in the direction of ix . What if you want to know the rate of change of  f x  

in some arbitrary direction denoted by h ? This is exactly what a directional 

derivative gives. Indeed,      
T

h h h
f x f x h f x h    . That is, the 

component of the gradient in the direction of h . 

 

Now, relate the concept of the directional derivative to Gateaux variation 

because we want to know how the value of the functional changes in a 



ME260: Lecture 11, Supplement C                   Structural Optimization; Size, Shape, and Topology 

IISc                          6  Ananthasuresh 
 

“direction” of another element h  in the vector space. Thus, the Gateaux 

variation extends the concept of the directional derivative of finite multi-

variable calculus to infinite dimensional vector spaces, i.e., calculus of 

functionals. 

 

Gâteaux differentiability 

If Gateaux variation exists for all h X  then J  is said to be Gateaux 

differentiable. 

 

Operationally useful definition of Gateaux variation 

Gateaux variation can be thought of as the following ordinary derivative 

evaluated at 0  . 
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                      
0

;
d

J f h J f h
d 

 
 

   

 

This helps calculate the Gateaux variation easily by taking an ordinary 

derivative instead of evaluating the limit as in the earlier formal definition. 

Note that this definition follows from the earlier definition and the concept 

of how an ordinary derivative is defined in ordinary calculus if we think of 

the functional as a simple function of  . 

 

Gateaux variation and the necessary condition for 

minimization of a functional 
 

Gâteaux variation provides a necessary condition for a minimum of a 

functional. 
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Consider   J f  where   ,     ,J f f D  is an open subset of a normed vector 

space , and *f D  and any fixed vector h . 

 

If *f  is a minimum, then   

 

       * * 0J f h J f    

 

must hold for all sufficiently small   

 

Now,  
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   

   

* *

* *

for  0

                0

and for 0

                0

J f h J f

J f h J f















 




 


  

   

   

   

* *

* *

* *

0
0

0

0
0

Gateaux variation
ensures the existence of this limit

If we let 0,

              0

  lim ( ; ) 0

and       0

lim

 lim

J f h J f

J f h J x
J x h

J f h J f













 
















 


 
 

  
 



 

 

This simple derivation proves that the Gateaux variation being zero is the 

necessary condition for the minimum of a functional. Likewise we can 
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show (by simply reversing the inequality signs in the above derivation) that 

the same necessary condition applies to maximum of a functional.  

 

Now, we can state this as a theorem since it is a very important result. 

 

Theorem: necessary condition for a minimum of a functional  

  

             *; 0   for all J f h h    

 

Based on the foregoing, we note that Gateaux variation is very useful in the 

minimization of a functional but the existence of Gateaux variation is a 

weak requirement on a functional since this variation does not use a norm 

in X . Without a norm, we cannot talk about continuity of a functional 
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because we cannot judge how close two functions are to each other. Thus, 

Gateaux variation is not directly related to the continuity of a functional. 

For this purpose, another differential called Fréchet differential has been 

put forth. 

 

 

Fréchet differential  
 

                    
     

0

;
0lim

h

J f h J f dJ f h

h

  
  

 

 

If the above condition holds and  f;dJ h  is a linear, continuous functional 

of h , then J  is said to be Fréchet differentiable at f  with “increment” h .  
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 ;dJ f h  is called the Fréchet differential. 

 

If  J  is differentiable at each f D  we say that J  is Fréchet differentiable in 

D . 

 

Some properties of Fréchet differential  
 

i)        f; ;J f h J f dJ h E f h h     for any small non-zero h X  has a 

limit zero at the zero vector in . That is, 

 

        lim ; 0
h

E f h


 . 
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 Based on this, sometimes the Fréchet differential is also defined as 

follows. 

 

  
     ;

0lim
h

J f h J f dJ f h

h

  
 .  

 

ii)     1 1 2 2 1 1 2 2; ; ( ; )dJ f a h a h a dJ f h a dJ f h    must hold for any numbers 

1 2,a a K     and any 
1 2,h h  .       

 This is simply the linearity requirement on the Fréchet differential. 

 

iii)   ; c    for all dJ f h h h  , where c  is a constant.   

 This is the continuity requirement on the Fréchet differential. 
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iv)     
Frechet 
derivative

;dJ f h J f h   

This is to say that the Fréchet differential is a linear functional of h . Note 

that it also introduces a new definition: Fréchet derivative, which is 

simply the coefficient of h  in the Fréchet differential. 

 

 

Relationship between Gateaux variation and Fréchet 

differential  
 

If a functional J  is Fréchet differentiable at f  then the Gateaux variation 

of J  at f   exists and is equal to the Fréchet differential. That is, 

 
    ; ;    for all   J f h dJ f h h    
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Here is why: 

 

Due to the linearity property of  ;dJ f h , we can write 

 
     ; ;dJ f h dJ f h   

 

By substituting the above result into property (i) of the Fréchet 

differential noted earlier, we get 

 
        ; , for any J f h J f dJ f h E f h h h         

 

A small rearrangement of terms yields 
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   

   ; ,
J f h J f

dJ f h E f h h
 


 

 
   

 

When limit 0   is taken, the above equation gives what we need to 

prove: 

 

 
   

     
0 0

lim ; ;     because lim , 0
J f h J f

J f h dJ f h E f h h
 

 
 

  

 
    

 

Note that the latter part of property (i) is once again used in the preceding 

equation. 

 

Operations using Gateaux variation   
 

Consider a simple general functional of the form shown below. 
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      

 

2

1

,  ,   

where 

x

x

J y F x y x y x dx

dy
y x

dx



 


 

 

Here, ( )y x  is the unknown function using which the functional is defined. 

It takes the role of f  that we have used so far. We need to have our wits 

about us to see which symbol is used in what way! 

 

If we want to calculate the Gateaux variation of the above functional, 

instead of using the formal definition that needs an evaluation of the limit 

we should use the alternate operationally useful definition—taking the 

ordinary derivative of  J y h  with respect to   and evaluating at 0  . In 
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fact, there is an easier route that is almost like a thumb-rule. Let us find that 

by using the derivative approach for the above simple functional. 

 

          
2

1

,  + ,  

x

x

J y h F x y x h x y x h x dx       

 

Recalling that    
0

;
d

J f h J f h
d 

 
 

  , we can write 

 

   

  

2

1

2

1

,  + ,  

                     ,  + ,  

x

x

x

x

d d
J f h F x y h y h dx

d d

d
F x y h y h dx

d

  
 

 


  
    

  

  




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Please note that the order of differentiation and integration have been 

switched above. It is a legitimate operation. By using chain-rule of 

differentiation for the integrand of the above functional, we can further 

simplify it to obtain 

 

 
   

2 2

1 10

;

x x

x x

F F F F
J f h h h h h dx

y h y h y y



 



      
                

  . 

 

What we have obtained above is a general result in that for any functional, 

be it of the form ( , , , , , )J x y y y y   , we can write the variation as follows. 

 

 
2 2

1 1

; ( , , , , , )

x x

x x

F F F F
J f h F x y y y y dx h h h h dx

y y y y


    
                 

  . 
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Note that in taking partial derivatives with respect to y  and its derivatives 

we treat them as independent. It is a thumb-rule that enables us to write 

the variation rather easily by inspection and using rules of partial 

differentiation of ordinary calculus. 

 

We have now laid the necessary mathematical foundation for deriving the 

Euler-Lagrange equations that are the necessary conditions for the 

extremum of a function. Note that the Gateaux variation still has an 

arbitrary function h . When we get rid of this, we get the Euler-Lagrange 

equations. For that we need to talk about fundamental lemmas of calculus 

of variations. 

 

Variational Derivative 
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We have studied Gateaux variation and Fréchet differential and the 

relationship between them. There is one more subtle variant of this, which 

is called the variational derivative. It is useful in some applications and in 

proving some theorems. More importantly, it tells us an alternative way of 

looking at the concept of variation based purely on the techniques of 

ordinary calculus. In fact, it can be interpreted as the “partial derivative” 

equivalent for calculus of variations. As the history goes, Euler had 

apparently derived his eponymous necessary condition using this concept.  

Let us begin with the notation. The variational derivative of a functional 

0

( , , )

fx

x

J F x y y dx   is denoted as 
J

y




 and is given by 

y

J d F
F

y dx y





 
    

 (1) 
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You may observe that it is nothing but the Euler-Lagrange expression that 

should be zero. When J  has a more general form, the expression for 
J

y




 

will be the corresponding expression in the E-L equation that we equate to 

zero. Let us see what rationale underlies this definition. 

 

Because we want to use only the techniques of ordinary calculus, let us 

“discretize” ( )y x  and consider finitely many discrete points 

 1,2,.......,kx k N  within the interval  0 , fx x .  See Fig. 1. As can be seen in 

this figure, by way of discretization, we are approximating the continuous 

curve of ( )y x  by a polygon.  
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Figure 1. Discretization of a continuous curve ( )y x  by a polygon. All 

subdivisions on the x -axis are equal to x .  A local perturbation at 
kx  is 

considered and its effect is shown with the dashed lines. 

 

Now, the functional can be approximated as follows. 

 
1

 
N

k

 1 1
1

1 11

( ) ( )
, , ( ) , ,

( )

N N
k k k k

N k k k k k k

k kk k

y y y y
J J F x y x x F x y x

x x x

 


 

   
       

   
   (2) 
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where in the last step we have assumed that all subdivisions along the x -

axis are equal to x . Our variables to minimize 
NJ  are now  1 2, , , Ny y y . 

Consider the partial derivative of  
NJ  with respect to 

ky . 

 

 
  

¶J
N

¶y
k

= F
y
(x

k
, y

k
,
( y

k+1
- y

k
)

Dx
)Dx + F

¢y
(x

k-1
, y

k-1
,
( y

k
- y

k-1
)

Dx
) - F

¢y
(x

k
, y

k
,
( y

k+1
- y

k
)

Dx
)  

         (3)                                                                                                             

 

Here, we have just used the chain rule of differentiation. As 0x  , the 

RHS of Eq. (3) goes to zero. Now, divide the LHS and RHS of Eq. (3) by x   

to get  

 

 

1 1
1 1

1

( ) ( )
( , , ) ( , , )

( )
( , , )

k k k k
y k k y k k

N k k
y k k

k

y y y y
F x y F x y

J y y x xF x y
y x x x

 
  



 


    
   
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        (4) 

 

When 0x  , 
ky x  , which can be interpreted as the shaded area in Fig. 1, 

also tends to zero. In fact, we then denote 
ky x   as k  or, in general, 

simply as y  evaluated at 
kx x . Furthermore, as  0x  , 

NJ J . We take 

the limit of Eq. (4) as 0x  . 

 

  
0

lim N
y y

x
k

J J d
F F

y x y dx






 


  

 
 (5) 

Notice how we defined the variational derivative in Eq. (5). We can think 

of 
J

y




 as the limiting case of     

( ) ( )J y h J y



 


   where h  is the perturbation 

(i.e., variation) of y  at some x


 and    is the extra area under ( )y x  due to 

that perturbation. Therefore, we write 
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 ( ) ( )
x x

J
J J y h J y

y


 

 



  
       

  
 (6) 

 

where   is a small discretization error. When the discretization error is 

insignificantly small, we can write 

 

 
x x

J
J

y




 



    (7) 

 

Thus, the variational derivative helps us get the first order change in the 

value of the functional for a local perturbation of ( )y x  at ˆx x . Think of 

Taylor series of expansion of a function of many variables and try to relate 

this concept of first order change in the value of the function. 

 


