Lecture 14a

Global Constraints in calculus of Variations

ME 260 at the Indian Institute of Science, Bangalore Structural Optimization: Size, Shape, and Topology
G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Banagalore suresh@iisc.ac.in

Outline of the lecture

Global and local constraints
Dealing with global constraints
Euler-Lagrange equations with constraints; Lagrange multipliers
Inequality constraints
What we will learn:
How to identify a constraint as global as local
When is Lagrange multiplier a scalar
How to write Euler-Lagrange equations and boundary conditions for a problem with global constraints

Interpreting the Lagrange multipliers and understanding the complementarity conditions

Global vs. local constraints

Global vs. local here pertains to whether a constraint is imposed at each point in the domain or it is imposed on a quantity that pertains to the entire domain.

Global constraints pertain to the entire domain.
Local constraints are imposed at every point in the domain, individually.
Mathematically, it tells whether a constraint is a functional or a function.
Global constraint is a functional
Local constraint is a function. It can also be a differential equation.
It also has implications when we discretize.
Upon discretization, a global constraint gives rise to only one constraint. A local constraint, on the other hand, gives as many constraints as the number of discretization points.

Examples of global and local constraints
 Global constraints
 Local constraints

Length of a curve
Area of a surface
Time of travel
Weight of a structure
Deflection at a particular point
Maximum stress
Buckling load
Natural frequency

Upper or lower bound on a curve
Bounds on the deflection of a structure

Bounds on stress

Governing differential equation Bounds on the mode shape

It is important to understand this difference.

Global constraint: isoperimetric problem

$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x)\right) d x$
Subject to

$$
K=\int_{x_{1}}^{x_{2}} G\left(y(x), y^{\prime}(x)\right) d x-K^{*}=0
$$

This problem statement means that we need to find $y(x)$ that minimizes J and satisfies the equality constraint, K.

It is a global constraint because K here depends on the entire domain. It is a functional. It is a single value.
A problem with a global constraint is also called isoperimetric problem. This is because the perimeter constraint is the historic global constraint.

How do we solve this?

$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x)\right) d x$

Subject to

$$
K=\int_{x_{1}}^{x_{2}} G\left(y(x), y^{\prime}(x)\right) d x-K^{*}=0
$$

Recall how we handled equality constraints in finite-variable optimization.

You may recall from that... We linearized the constraint and used the first-order term to eliminate a variable and made the problem unconstrained. We also came up with the concept of Lagrange multiplier. Here too, we will follow the same idea.

Equivalent of first-order term of a

 functionalFrom Eq. (6) in Slide 26 of Lecture 9

$$
J=J(y+h) \quad J(y)=\left\{\left.\frac{J}{y}\right|_{x=\hat{x}}+\right\}
$$

$$
\frac{J}{y}=F_{y} \quad \frac{d}{d x}\left(F_{y}\right)
$$

Variational derivative, which is the expression in the Euler-Lagrange equation.
(first-order approximation of a perturbed functional)

First-order term of the global constraint

$$
K=\int_{x_{1}}^{x_{2}} G\left(y(x), y^{\prime}(x)\right) d x-K^{*}=0
$$

$$
K=K(y+h) \quad K(y)=\left\{\left.\frac{K}{y}\right|_{x=\hat{x}}+\right\}
$$

$$
\frac{K}{y}=G_{y} \quad \frac{d}{d x}\left(G_{y}\right)
$$

The first-order term shows that the constraint has non-zero value whenever we perturb the function at a point. So, it won't satisfy the equality constraint anymore. So, we will perturb $y(x)$ at two points...

Two perturbations of the global constraint

$$
\begin{aligned}
& K_{a}=K(y+h) \quad K(y)=\left\{\left.\frac{K}{y}\right|_{x=x_{a}}+{ }_{a}\right\} \quad{ }_{a} \quad{ }_{a}=\begin{array}{ll}
y_{a} & x_{a}
\end{array} \\
& K_{b}=K(y+h) \quad K(y)=\left\{\left.\frac{K}{y}\right|_{x=x_{b}}+{ }_{b}\right\} \\
& { }_{b}=y_{b} x_{b} \\
& \text { b } \\
& \text { 號 }
\end{aligned}
$$

We choose x_{a} and x_{b} such that the first-order changes due to the two perturbations cancel each other and we retain the feasibility of the constraint.

$$
\begin{aligned}
& K_{a}+K_{b}=0 \\
& \Rightarrow\left\{\left.\frac{K}{y}\right|_{x=x_{a}}+{ }_{a}\right\} \quad{ }_{a}+\left\{\left.\frac{K}{y}\right|_{x=x_{b}}+{ }_{b}\right\} \quad{ }_{b}=0
\end{aligned}
$$

One perturbation of the function in terms of the other

In order to divide like this, we require that there should be at least one point x where the variational derivative is not zero. This is the equivalent of constraint qualification of finitevariable optimization. See Slide 13 of Lecture 5.

Perturbation of the objective functional at the same two points by the same amounts

$$
J_{a}+J_{b}=J_{a+b}
$$

$$
\Rightarrow\left\{\left.\frac{J}{y}\right|_{x=x_{a}}+{ }_{a}\right\} \quad{ }_{a}+\left\{\left.\frac{J}{y}\right|_{x=x_{b}}+{ }_{b}\right\} \quad{ }_{b}=J_{a+b}
$$

Eliminating one perturbation...

$$
\begin{aligned}
& b=\frac{\left\{\left.\frac{K}{y}\right|_{x=x_{a}}+{ }_{a}\right\}}{\left\{\left.\frac{K}{y}\right|_{x=x_{b}}+{ }_{b}\right\}}{ }_{a} J_{a+b}=\left\{\left.\frac{J}{y}\right|_{x=x_{a}}+{ }_{a}\right\}{ }_{a}+\left\{\left.\frac{J}{y}\right|_{x=x_{b}}+{ }_{b}\right\} \\
& \left.J_{a+b}=\left\{\left.\frac{J}{y}\right|_{x=x_{a}}+{ }_{a}\right\} \quad a \quad\left\{\left.\frac{J}{y}\right|_{x=x_{b}}+{ }_{b}\right\} \frac{\left\{\left.\frac{K}{y}\right|_{x=x_{a}}+{ }_{a}\right\}}{\left\{\left.\frac{K}{y}\right|_{x=x_{b}}+{ }_{b}\right\}}{ }_{a}\right\}
\end{aligned}
$$

First order change in the objective functional

$$
J_{a+b}=\left[\left\{\left.\frac{J}{y}\right|_{x=x_{a}}+{ }_{a}\right\}+\left\{\left.\frac{K}{y}\right|_{x=x_{a}}+{ }_{a}\right\}\right]{ }_{a}
$$

$$
\begin{gathered}
\Rightarrow J_{a+b}=\left[\left.\frac{J}{y}\right|_{x=x_{a}}+\left.\frac{K}{y}\right|_{x=x_{a}}+\right] \quad{ }_{a}=0<\begin{array}{l}
\text { This is zero because } \\
\text { now it it te te first- } \\
\text { order arm duet to } \\
\text { ofeasbrary }
\end{array} \\
\text { feasibe } \\
\text { perturbation } \\
\text { by }\left.\right|_{x=x_{a}}+\left.\Lambda \frac{\delta K}{\delta y}\right|_{x=x_{a}}=0 \text { because the other } \\
\text { one is eliminated. }
\end{gathered}
$$

$$
\text { and } \begin{aligned}
\varepsilon \Delta \sigma_{a}=0 & \text { (the second } \\
& \text { order term) }
\end{aligned}
$$

Putting things together...

$$
\frac{\left\{\left.\frac{J}{y}\right|_{x=x_{b}}{ }{ }_{b}\right\}}{\left\{\left.\frac{K}{y}\right|^{y}{ }^{\prime}+{ }_{b}\right\}}=\Rightarrow\left\{\left.\frac{J}{y}\right|_{x=x_{b}}+{ }_{b}\right\}+\left\{\left.\frac{K}{y}\right|_{x=x_{b}}+{ }_{b}\right\}=0
$$

$$
\left.\frac{J}{y}\right|_{x=x_{b}}+\left.\frac{K}{y}\right|_{x=x_{b}}=0
$$

Since x_{a} and x_{b} are arbitrary, the following should be true for any x. And must be a constant.

From Slide 14...
$\left.\left.\frac{J}{y}\right|_{x=x_{a}}+\left.\frac{K}{y}\right|_{x=x_{b}}=0\right\}$

Lagrangian can now be defined.

$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x} F\left(y(x), y^{\prime}(x)\right) d x$
Subject to

$$
\begin{aligned}
& K=\int_{x_{1}}^{x_{2}} G\left(y(x), y^{\prime}(x)\right) d x-K^{*}=0 \\
& \operatorname{Min} \\
& y(x)=\left\{\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x)\right) d x\right\}+\Lambda\left\{\int_{x_{1}}^{x_{2}} G\left(y(x), y^{\prime}(x)\right) d x\right\}
\end{aligned}
$$

Necessary coniditon

Necessary conditions

$$
y(x)
$$
Function

Scalar variable

What if we have an inequality constraint?

$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x)\right) d x$
Subject to

$$
K=\int_{x_{1}}^{x_{2}} G\left(y(x), y^{\prime}(x)\right) d x-K^{*} \leq 0 \quad \int_{\Lambda}^{\Lambda}\left(\begin{array}{l}
\left.\int_{x_{1}}^{x_{2}} G\left(y(x), y^{\prime}(x)\right) d x-K^{*}\right)=0 \\
\Lambda \geq 0
\end{array}\right.
$$

We introduce complementarity condition and require non-negativity of the Lagrange multiplier... just as we did in finite-variable optimization. The same argument applies here too.

Example 1: hanging chain problem

$\operatorname{Min}_{y(x)} P E=\int_{0}^{h}(\rho g y) d s=\int_{0}^{h} \rho g y \sqrt{1+y^{\prime 2}} d x$
Subject to

$$
\int_{0}^{h}\left(\sqrt{1+y^{\prime 2}}\right) d x-L=0
$$

Data : $L, y(0)=0, h, y(h)=v, \rho, g$
$\operatorname{Min}_{y(x)} L=\int_{0}^{h} \rho g y \sqrt{1+y^{\prime 2}} d x+\Lambda\left(\int_{0}^{h}\left(\sqrt{1+y^{\prime 2}}\right) d x-L\right)$
Mass per unit
$=$ length of the chain

Data: $L, y(0)=0, h, y(h)=v, \rho, g$

Necessary conditions for the hanging chain problem
$\operatorname{Min}_{y(x)} L=\int_{0}^{h} \rho g y \sqrt{1+y^{\prime 2}} d x+\Lambda\left(\int_{0}^{h}\left(\sqrt{1+y^{\prime 2}}\right) d x-L\right)$
Data: $L, y(0)=0, h, y(h)=v, \rho, g$

$$
\begin{aligned}
& \delta_{y} L=0 \\
& \int_{0}^{h}\left(\sqrt{1+y^{\prime 2}}\right) d x-L=0
\end{aligned}
$$

$$
{ }_{y} L=\frac{\partial L}{\partial y} \quad \frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)=0
$$

Differential equation

Example 2: Stiffest beam of given volume
 $\operatorname{Min}_{b(x)} S E=\int_{0}^{L}\left\{\frac{1}{2} \frac{E b d^{3}}{12}\left(\frac{d^{2} w}{d x^{2}}\right)^{2}\right\} d x$

Subject to

$$
\frac{d^{2}}{d x^{2}}\left(E b d^{3} \frac{d^{2} w}{d x^{2}}\right)+q=0
$$

$$
\int_{0}^{L} b d d x \quad V^{*} \leq 0
$$

Data : $L, q(x), d, V^{*}, E$

This is a local constraint; it is valid at every point in the domain.

We now know how to deal with this global constraint

The end note

