Lecture 15a

General Variation of a Functional Transversality conditions Broken extremals Corner conditions

ME 260 at the Indian Institute of Science, Bengaluru Structural Optimization: Size, Shape, and Topology
G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bengaluru suresh@iisc.ac.in

Outline of the lecture

Variable end conditions: motivating examples
General variation
Transversality conditions
Weierstrass-Erdman corner conditions
What we will learn:
Why we need to deal with variable end conditions in calculus of variations

How to take general variation and how it affects only the boundary conditions and not the differential equation
What broken extremals are
How we can get the regular boundary conditions as special cases

Modified brachistochrone problem

Now, point B can be anywhere on a given curve represented by ${ }_{2}(x)$

We want to find $y(x)$ such that an object will reach any point on ${ }_{2}(x)$ in the least time.

Note that the change in the problem statement comes only in the end condition and not in the functional.

Another modification...

Note again that the change in the problem statement comes only in the end conditions and not in the functional.

Now, point A can be anywhere on a given curve represented by

We want to find $y(x)$ such that an object will reach any point on ${ }_{2}(x)$ starting from any point on ${ }_{1}(x)$ in the least time.

A general problem with variable end conditions

What do we do when ends are not given?
Recall that we had taken a variation (a perturbation) around a minimal curve $y^{*}(x)$ and equated the first-order term to zero to establish the necessary condition. Here, the perturbation should be taken for $y^{*}(x)$ and the two ends.
"Variable ends" means that both ends can also be perturbed.
That is, the domain over which we integrate is variable.
In such a case, we take what is called a general variation in which ends are also perturbed.
See the next slide...

General non-contemporaneous variation
 (related to non-contemporary)

The term "non-contemporaneous" must be in the context of time-related problems. We are shifting the x-axis. So, y and y^{*} are not defined on the same domain.

$$
J=\int_{x_{1}+x_{1}}^{x_{2}+x_{2}} F\left(y^{*}+h, y^{y^{*}}+h^{\prime}\right) d x \int_{x_{1}}^{x_{2}} F\left(y^{*}, y^{\prime *}\right) d x
$$

First-order change with general variation

$$
J=\int^{x_{2}+} F\left(y^{x_{2}}+h, y^{y^{*}}+h^{\prime}\right) d x \int^{x_{2}} F\left(y^{*}, y^{\prime^{*}}\right) d x
$$

$$
\underset{x_{i}}{x_{i}+x_{i}+x_{1}}
$$

$$
=\int^{x_{2}} F\left(y^{*}+h, y^{y^{*}}+h^{\prime}\right) d x \int^{x_{2}} F\left(y^{*}, y^{\prime *}\right) d x \begin{aligned}
& \text { We got both on the the } \\
& \text { same domain. }
\end{aligned}
$$

$$
x_{1}
$$

So, these two terms

$$
\approx \int_{x_{1}}^{x_{2}} F\left(y^{*}+h, y^{\prime *}+h^{\prime}\right) d x \int_{x_{1}}^{x_{2}} F\left(y^{*}, y^{\prime *}\right) d x \underbrace{\left.F\right|_{x_{1}} x_{1}+\left.F\right|_{x_{2}} x_{2}}_{\substack{\text { This is an approximation because the } \\ \text { perturbed domains are very small. }}}
$$

Extensions of the domain at either end

$$
\left.J \approx \int_{x_{1}}^{x_{2}} F\left(y^{*}+h, y^{\prime^{*}}+h^{\prime}\right) d x \int_{x_{1}}^{x_{2}} F\left(y^{*}, y^{\prime *}\right) d x \quad F\right|_{x_{1}} x_{1}+\left.F\right|_{x_{2}} x_{2}
$$

The domains of the original curve and the perturbed curve need to be extended as shown with blue lines by maintaining tangency to the respective curves.

The first term of the first-order term...

$$
\int_{x_{1}}^{x_{1}} F\left(y^{*}+h, y^{\prime *}+h^{\prime}\right) d x \approx \int_{x_{1}}^{x} F\left(y^{*}, y^{\prime *}\right) d x+\int_{x_{1}}^{x_{1}}\left\{F_{y} h+F_{y} h^{\prime}\right\} d x
$$

$$
\left.=\int_{x_{1}}^{x_{1}} F\left(y^{*}, y^{\prime \prime}\right) d x+\int_{x_{1}}^{n}\left\{F_{y}-\frac{d}{d x}\left(F_{y}\right)\right\} h d x+\left(F_{y} h\right)\right)_{x_{1}}^{k_{2}}
$$

$$
=\int_{x_{1}}^{x} F\left(y^{y^{\prime}}, y^{\prime \prime}\right) d x+\underbrace{\int_{y_{i}}^{x_{1}}\left\{F_{y}-\frac{d}{d x}\left(F_{y}\right)\right\} h d x+\left.\left(F_{y} h\right)\right|_{x_{2}}-\left.\left(F_{y} h\right)\right|_{x_{i}}}
$$

A result we had derived earlier.

And now...

$J \approx \int_{x_{2}} F\left(y^{*}+h, y^{*}+h^{\prime}\right) d x \int_{n}^{x} F\left(y^{*}, y^{*}\right) d x \quad F_{x_{1}} x_{1}+\left.F\right|_{x_{2}} x_{2}$ By substituting for this from the preceding slide...

$$
\Delta J \approx \int_{x_{1}}^{x_{2}}\left\{F_{y}-\frac{d}{d x}\left(F_{y^{\prime}}\right)\right\} h d x+\left.\left(F_{y^{\prime}} h\right)\right|_{x_{2}}-\left.\left(F_{y^{\prime}} h\right)\right|_{x_{1}}-\left.(F \delta x)\right|_{x_{1}}+\left.(F \delta x)\right|_{x_{2}}
$$

Recall

$$
y_{1}=h_{1}+y_{1} \quad x_{1} \quad h_{1}=\begin{array}{lll}
y_{1} & y_{1} & x_{1}
\end{array}
$$ from

slide 8:

$$
\Rightarrow J \approx \int_{x_{1}}^{x_{2}}\left\{F_{y} \frac{d}{d x}\left(F_{y^{\prime}}\right)\right\} h d x+\left.\left(F_{y^{\prime}} y\right)\right|_{x_{1}} ^{x_{2}}+\left.\left\{\left(\begin{array}{ll}
F & F_{y^{\prime}} y^{\prime}
\end{array}\right) x\right\}\right|_{x 1} ^{x_{2}}
$$

Necessary condition and boundary

 conditions...finally.First order is equated to zero for the necessary condition, as usual.

$$
J \approx \underbrace{\int_{x_{1}}^{x_{2}}\left\{F_{y} \frac{d}{d x}\left(F_{y^{\prime}}\right)\right\} h d x+\left.\left(\begin{array}{ll}
F_{y^{\prime}} & y
\end{array}\right)\right|_{x_{1}} ^{x_{2}}+\left\{\left(\begin{array}{ll}
F & F_{y^{\prime}} y^{\prime}
\end{array}\right) x\right.}_{\text {By invoking the fundamental }}\}\left.\right|_{x 1} ^{x_{2}}=0
$$

lemma, we get the differential equation:
$F_{y} \quad \frac{d}{d x}\left(F_{y^{\prime}}\right)=0$
Note that the differential equation, the Euler-Lagrange equation, did not change!

$$
\begin{aligned}
& \left.\left(\begin{array}{ll}
F_{y^{\prime}} & y
\end{array}\right)\right|_{x_{1}} ^{x_{2}}=0 \text { and } \\
& \left.\left\{\left(\begin{array}{ll}
F & F_{y^{\prime}} y
\end{array}\right) x\right\}\right|_{x 1} ^{x_{2}}=0
\end{aligned}
$$

Note that the boundary condition of the fixed end conditions comes out neatly when the variation in the end conditions are zero. That is, when $x_{1}=x_{2}=0$

Boundary conditions when restricted to given curves

$$
\begin{aligned}
& y_{1}={ }_{1}\left(x_{1}\right) \quad x_{1}=1 \quad x_{1} \\
& y_{2}={ }_{2}\left(x_{2}\right) x_{2}=x_{2}
\end{aligned}
$$

These are called transversality conditions.

Transversality conditions

$$
\begin{aligned}
& \left\{\left.\left(F+F_{y^{\prime}}\left(\begin{array}{ll}
1 & y_{1}
\end{array}\right) x\right\}\right|_{x_{1}}=0\right. \\
& \left.\left\{\left(F+F_{y^{\prime}}\left(\begin{array}{ll}
2 & y
\end{array}\right)\right) x\right\}\right|_{x_{2}}=0 \\
& \text { Transversality has something to } \\
& \text { do with being orthogonal, ide., } \\
& \text { perpendicular. It is indeed so for } \\
& \text { certain functional. } \\
& F+F_{y^{\prime}}(\quad y)=0 \\
& f \sqrt{1+y^{2}}+\frac{f y}{\sqrt{1+y^{2}}}(\quad y)=0 \\
& f\left(1+y^{2}\right)+f y \quad f y^{2}=0 \\
& f(1+y \quad)=0 \\
& y=1 \\
& \text { It means that the minimal } \\
& \text { curve is orthogonal to the } \\
& \text { boundary curve! }
\end{aligned}
$$

Transversality and brachistochrone

Example: beam guided at one end

$$
\left.\left\{\left(F+F_{\mathrm{w}^{\prime}}\left(\phi_{2}^{\prime}-w^{\prime}\right)\right) \delta x\right\}\right|_{x_{2}}=0
$$

$$
F=\frac{1}{2} E I\left(w^{\prime \prime}\right)^{2}-q w \quad \text { because }
$$

$\operatorname{Min}_{w(x)} J=\int_{0}^{L}\left\{\frac{1}{2} E I\left(w^{\prime \prime}\right)^{2}-q w\right\} d x$
But there is no $F_{w^{\prime}}$, term here. So, we need to derive the transversality condition for w " term.

Transversality condition for $y^{\prime \prime}$ term

Resume from Slide 10 by including $y^{\prime \prime}$ term.

$$
\begin{aligned}
J & \left.\approx \int_{x_{1}}^{x_{2}} F\left(y^{*}+h, y^{\prime *}+h^{\prime}, y^{\prime \prime}+h^{\prime \prime}\right) d x \int_{x_{1}}^{x_{2}} F\left(y^{*}, y^{\prime^{*}}, y^{\prime \prime *}\right) d x \quad F\right|_{x_{1}} x_{1}+\left.F\right|_{x_{2}} x_{2} \\
& =\int_{x_{1}}^{x_{2}}\left\{F_{y}\left(F_{y^{\prime}}\right)^{\prime}+\left(F_{y^{\prime \prime}}\right)^{\prime \prime}\right\} d x+\left.\left(F_{y^{\prime \prime}} h^{\prime}\right)\right|_{x_{1}} ^{x_{2}}+\left\{\left(\begin{array}{ll}
F_{y^{\prime}} & \left.\left.\left(F_{y^{\prime \prime}}\right)^{\prime}\right) h\right\}\left.\right|_{x_{1}}+\left(\begin{array}{ll}
x_{2} & x)\left.\right|_{x_{1}} ^{x_{2}}
\end{array}\right.
\end{array} . \begin{array}{l}
x_{2}
\end{array}\right)\right.
\end{aligned}
$$

From Slide 17 in Lecture 11

$$
\begin{array}{llllllll}
\text { From Slide 10 } \\
\text { of this lecture }
\end{array} h_{1}=y_{1} \quad y_{1} \quad x_{1} \quad h_{1}=y_{1} \quad y_{1} \quad x_{1} .
$$

Extended transversality conditions

$$
\begin{aligned}
& \left(\begin{array}{ll}
F_{y^{\prime \prime}} & y^{\prime}
\end{array}\right)_{x_{1}}^{x_{2}}=0 \\
& \left.\left\{\left(F_{y^{\prime}}\left(F_{y^{\prime}}\right)^{\prime}\right) y\right\}\right\}_{x 1}^{x_{2}}=0 \text { and } \\
& \left.\left\{\left(\begin{array}{lll}
F & F_{y} y^{\prime}+\left(\begin{array}{ll}
F_{y^{\prime}}
\end{array}\right)^{\prime} y^{\prime} & F_{y}, y^{\prime \prime}
\end{array}\right) x\right\}_{x 1}\right|_{x 1} ^{x_{2}}=0
\end{aligned}
$$

Note that the boundary condition of the fixed end conditions comes out neatly when the variation in the end conditions are zero. That is, when

Extende (contd.)

Back to the guided beam...

$$
F=\frac{1}{2} E I\left(y^{\prime \prime}\right)^{2} \quad q w \quad \text { because }
$$

$$
\operatorname{Min}_{w(x)} J=\int_{0}^{L}\left\{\frac{1}{2} E I\left(y^{\prime \prime}\right)^{2} \quad q w\right\} d x
$$

$$
\left.\left\{\left(\frac{1}{2} E I\left(w^{\prime \prime}\right)^{2} \quad q w \quad\left(E I w^{\prime \prime}\right)^{\prime}\left(\begin{array}{ll}
\prime & y^{\prime} \\
2 & y^{\prime}
\end{array}\right)+E I w^{\prime \prime}\left(\begin{array}{ll}
\prime \prime & y^{\prime \prime}
\end{array}\right)\right)\right\}\right|_{x_{2}}=0
$$

For two functions in one variable

$F_{y} \quad\left(F_{y}\right)=0$
$F_{z} \quad\left(F_{z}\right)=0$

Differential equations do not change, as usual.

Transversality conditions

$$
\left.\begin{array}{l}
{\left[F_{y^{\prime}}+\frac{\partial_{\text {1or } 2}(y, z)}{\partial y}\left(\begin{array}{lll}
F & y^{\prime} F_{y^{\prime}} & z^{\prime} F_{z^{\prime}}
\end{array}\right)\right.}
\end{array}\right]\left.\right|_{x_{1}} ^{x_{2}}=0 .
$$

Minimal curves need not be smooth!

$$
\begin{aligned}
& \operatorname{Min}_{y(x)} J={ }_{0}^{L}(F(y, y) d x \\
& =\int_{0}^{x_{c}}\left(F_{1}(y, y) d x+{ }_{x_{c}}^{L}\left(F_{2}(y, y) d x\right.\right.
\end{aligned}
$$

So far, we had assumed that minimum curves are smooth, i.e., the slope of y is continuous. But what if it is not?
We get a kink or a sudden bend in the curve.

Such extremal curves are called broken extremals.
They happen in problems where something in the integrand of the function suddenly changes.
In such a case, variable conditions equations come to rescue us.

Broken extremal conditions

$$
\begin{aligned}
& \operatorname{Min}_{y(y)} J={ }_{0}^{L}(F(y, y) d x \\
& x_{0}^{x}\left(F_{1}(y, y) d x+{ }_{x}^{L}\left(F_{2}(y, y) d x\right.\right. \\
& { }_{0}^{L}
\end{aligned} \begin{aligned}
& \text { For the two parts...for one on the right side } \\
& \text { and the other on the left side. }
\end{aligned}
$$

So...

Weierstrass-Erdmann corner conditions

$\left.\left(\left(F_{y^{\prime}}\right)_{1} \quad\left(F_{y^{\prime}}\right)_{2}\right) y\right|_{x_{c}}=0$ and
$\left.\left\{\left(\begin{array}{ll}F & F_{y^{\prime}} y\end{array}\right)_{1} \quad\left(\begin{array}{ll}F & F_{y^{\prime}} y\end{array}\right)_{2}\right\} \quad x\right|_{x_{c}}=0$

So, whenever the intermediate point is variable...
$F_{y^{\prime}}$ and $\left(\begin{array}{ll}F & F_{y^{\prime}} y\end{array}\right)$ are continuous at the intermediate corner point.

Broken (non-smooth) extremals

Recall from Slide 3 of Lecture 2
This historically first calculus of variations problem has a non-smooth extremum!

Air

Refraction of light; non-smooth solution

We do not know for what x value, the bend takes place.
This is given by variable end conditions. Let us see...

Intermediate variable end condition

Now, for the two parts, x_{c} is a variable end condition!

Broken extremal conditions for a light ray

Snell's law from the corner condition

$F-y^{\prime} F_{y^{\prime}}=\frac{1}{v \sqrt{1+y^{\prime 2}}}$ is continuous at the corner. So, \ldots

$$
\frac{1}{v_{\text {air }} \sqrt{1+\tan _{\text {air }}^{2}}}=\frac{1}{v_{\text {glass }} \sqrt{1+\tan _{\text {glass }}^{2}}}
$$

$$
\begin{aligned}
& \cos _{\text {air }} \\
& v_{\text {air }} \cos _{\text {glass }} \\
& v_{\text {glass }} \frac{\sin _{\text {air }}}{v_{\text {air }}}=\frac{\sin _{\text {glass }}}{v_{\text {glass }}}
\end{aligned}
$$

The first corner condition also holds good here. Because y is zero.

Thus, we derived Snell's law using calculus of variations.

The end note

	Variable end conditions
	General variation
	Variable end conditions for first and second derivatives cases Transversality conditions
	Transversality conditions for the two-function case
	Broken extremals
	Weierstrass-Erdmann corner conditions

