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Outline of the lecture
Solving two problems concerning size optimization of beams for 
stiffness and flexibility with volume constraint.

What we will learn:

How to apply the eight steps we had used for bars to the case of beams.
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Problem 1
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We assume here that only b(x) is variable.
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Minimize the mean compliance 
of a beam for given volume of 
material.
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Steps in the solution procedure
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Step 1: Write the Lagrangian

Step 2: Take variation of the Lagrangian w.r.t. the design variable and 
equate to zero to get the design equation.

Step 3: Take variation of the Lagrangian w.r.t. state variable(s) and 
equate to zero to get the adjoint equation(s).

Step 4: Collect all the equations, including the governing equation(s), 
complementarity condition(s), resource constraints, etc.

Step 5: Obtain the optimality criterion by substituting adjoint and 
equilibrium equations into the design equation, when it is possible.

Step 6: Identify all boundary conditions.

Step 7: Solve the equations analytically as much as possible.

Step 8: Use the optimality criteria method to solve the equations 
numerically.
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Solution
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Minimize the mean compliance 
of a beam for given volume of 
material.
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Expand the Lagrangian
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Design equation
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Adjoint equation
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Collect all equations
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Strain energy 
density is 
uniform 
throughout the 
beam.

And,  cannot be 
zero.

So, the volume 
constraint is active.

Step 5Design equation
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Three functions and one scalar variable.

We have three differential 
equations and one scalar 
equation.
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Identify all boundary conditions
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Identify all boundary conditions
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Identify all boundary conditions
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Simplify 1st adjoint boundary condition
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Simplify 2nd-4th adjoint boundary 
conditions
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All four adjoint boundary conditions

15

( )
0

0
L

E A E A w    + =

( )
0

0
L

E A w   =

( )
0

0
L

E A w   =

( )
0

0
L

E A E A w    − =

PinnedFixed
0w w  = = 0w w = =

0A =

0A A  − =

0A =

No BC for ( )x No BC for ( )x

No BC for ( )x

No BC for ( )x

0A =

Notice that BCs of the state variable transfer to adjoint variable (most often). 
But be sure to keep the BCs on the design variable in mind.
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All four adjoint boundary conditions
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Notice that BCs of the state variable transfer to adjoint variable (most often). 
But be sure to keep the BCs on the design variable in mind.
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Solving for a particular beam BCs
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Reconciliation of BCs for A(x)

18

2
0 0

0
2

q x q L
A x C

E E 
=  − +

 
From the previous slide, we haveStep 7
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How do we choose 
the two possibilities 
(+ or -) and 
determine C0?
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Validating with the numerical solution…
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We need to see which part of the 
domain should have the “+ curve” 
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Problem 12

( )

( )

( )
0

*

0

2 *

0

2 *

( ) : 0

( ) : 0

: 0

1
: 0

2

: ,
12

L

A x

d d

L

L

*
d

Min V Adx

Subject to

x E Aw q

x E Av q

E Aw v dx

E Aw dx SE

tData L,q(x),q (x), = ,E,Δ SE

 

 







=

 − =

 − =

  −  =

 − =







Minimize the volume of material 
of a beam (statically determinate 
or indeterminate) for a 
deflection constraint in its span 
with an upper bound on the 
strain energy.



Structural Optimization: Size, Shape, and TopologyG. K. Ananthasuresh, IISc

The end note
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Iterative numerical solution, when it is needed, remains 
the same.

We follow essentially the same eight steps

Identifying the optimality criterion is the highlight.

See the correlation between BCs and optimal profiles

Boundary conditions for the adjoint variable need to be carefully done.

Analytical solution may be segmented with multiple 
possibilities because of + and – of constant strain.


