
Lecture 2b

Necessary and Sufficient 
Conditions for 

Unconstrained Minimization
ME260 Indian Inst i tute  of  Sc ience  

Str uc tur a l  O pt imiz a t io n :  S iz e ,  Sha pe ,  a nd  To po lo g y

G .  K.  Ana ntha s ur e s h

P r o f e s s o r ,  M e c h a n i c a l  E n g i n e e r i n g ,  I n d i a n  I n s t i t u t e  o f  S c i e n c e ,  B e n g a l u r u

s u r e s h @ i i s c . a c . i n

1

mailto:suresh@iisc.ac.in


Structural Optimization: Size, Shape, and TopologyME260 / G. K. Ananthasuresh, IISc

Outline of the lecture
Necessary conditions for unconstrained optimization problem 
◦ In one variable

◦ In two variables

◦ In multiple variables

What we will learn:

The concept of a local minimum

The premise for writing the necessary condition

The concept of gradient of a function of n variables

And, of course, the necessary conditions of unconstrained optimization 
problem
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Global and local minima: definitions

is  global minimizer of           if                             in the feasible interval of     . *( ) ( )  f x f x x  x
*x ( )f x

These are just definitions; not conditions.
Definitions of this sort do not let you check if a given value of x is a 
minimum or not unless you exhaustively check the entire domain of x.

A condition would let you check this easily.

Global minimum

Local minimum

,  *with 0x x S x x  
  
 
  

   

*x *( ) ( )f x f x( )f x
*x

x

is a local minimizer of if in a small neighborhood of

in the feasible interval of    .

N = small neighborhood =

Simple case: f(x), a function of a single variable, x.
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Conditions for a local minimum of f(x)

Necessary 
condition

Why is the necessary condition not sufficient?

Is the sufficient condition also necessary?

Think about the literal meaning of “necessary” and “sufficient”.

*

0

x

df
dx



2

2

*

0

x

d f
dx



Local 
max

Local 
min

Saddle 
point

f(x)

x

Global min

If x* is a local minimum of f(x), then…

Sufficient 
condition*

0

x

df
dx

 &
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Why is necessary condition “necessary”?

   1

2

2 2
*

2
*

*(( ) (3)) *
*

df
x x

d

d f
x x

dx
x

f xx
x

f
x

O   

Consider Taylor series expansion of f(x) around x*.

Zeroth 
order 
term

First 
order 
term

Second 
order 
term

Higher 
order 
terms

  
f (x) = f (x*)+ ¢f (x*)Dx* +

1

2
¢¢f (x*) Dx*( )

2

+ O(3)

*x *( ) ( )f x f x( )f x
*x

x

is a local minimizer of if in a small neighborhood of

in the feasible interval of    .

Here the small neighborhood is       . When it is small, it is the first order term that matters 
more than the second order term.
Unless           is zero, we cannot be sure that the definition is satisfied. More in the next slide.

  Dx*

  ¢f (x*)

  
d x* = x - x *( )

Perturbation 
around x*
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Why is necessary condition necessary? (contd.)

  
f (x) = f (x*)+ ¢f (x*)Dx* +

1

2
¢¢f (x*) Dx*( )

2

+ O(3)

  Dx*For small (as small as you can imagine…)

NegligibleMay be positive 
or negative 
depending on the 
sign of f(x*) as      
can be positive or 
negative.

  Dx*

*( ) ( )f x f xSo, for it is necessary to have   
  ¢f (x*)= 0
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Why is necessary condition not sufficient?

Note that we only talk about the function “not being less 
in the small neighborhood of the minimizing point” to 
say that it has a local minimum.

So, the condition is that the first order term is zero for any 
small perturbation. This necessitates the first order 
derivative to be zero.

This condition is necessary, as noted in the previous slide.

But…

The necessary condition is true for a local minimum and a 
local maximum. So, it is not sufficient to conclude that a 
given value of x is a local minimum. 
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Is sufficient condition also necessary?

4

' 3 *

'' 2

''' *

( )

( ) 4    0

( ) 12 0

( ) 24   = 0   0

( ) 24 0iv

f x x

f x x x

f x x

f x x x

f x



  

 

  

 

  

d 2 f
dx2

x*

=0

But x* = 0, is a minimizer here! So, 
sufficient condition is not 
necessary.

*

0

x

df
dx



  x
* = 0

Necessary 
condition 
is satisfied.

Sufficient 
condition is not
satisfied.

Consider…
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Understand “necessary” and “sufficient” well.
The logic of necessary and sufficient conditions should be clearly 
understood.

They actually mean what they say but it can be confusing and 
misleading sometimes.

What is necessary may not be sufficient.

What is sufficient may not be necessary.

Sometimes, a condition can be necessary and sufficient.

Note all of this we are saying only in the context of a local minimum.

For a global minimum, there is no “operationally useful” definition or 
condition.

Let us move to a function of more than one variable next…
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A function of two variables…

  

f (x, y) = f (x*, y*) + f
x
(x*, y*)Dx* + f

y
(x*, y*)Dy* +

+
1

2
f

xx
(x*, y*)(Dx*)2 + 2 f

xy
(x*, y*)Dx*Dy* + f

yy
(x*, y*)(Dy*)2{ } + O(3)

 

 * *

*

* *

* * * *

* * * * *

*

* * * *

*

1

2 ( ,

, ,

) ( , )

( , ) ( ,

,

)

( ( ) ( )

(3)

)( , ) x y

xx xy

xy yy

x y
f x y f x y x

f x y f x y y

yy yf x

O

x
f x f x

y
f x y

     
    

   

 
 
 

 

  









Taylor series expansion of f(x,y) around (x*,y*):

  

f
x

=
¶ f

¶x
; f

y
=

¶ f

¶y
; f

xx
=

¶2 f

¶x2
; f

xy
=

¶2 f

¶x¶y
; f

yy
=

¶2 f

¶y2
where

In
 m

at
ri

x
 f

o
rm
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Two-variable function (contd.)

 

 

 

* *

*

*

*

* * * * *

* *

* * * * *

*

* * * *

* * *

*

*

* *

* *

*

( , ) ( , )1

( , ) ( , )2

, ,,

1
()

2
( , ),,

( ) (( )

(

(3)

(3)

( ,

)

) )

xx xy

x y

xy

T

yy

f x y f x y x
x y

f x y f x y y

x
x y x y

y y

x
f x y

y

y

y
y

x
f x f x

O

f x

f

f
y

Ox

x y

 
  



   
     

   



 

 
  

 
 
 




 

  

 









  H

where

  

Ñf (x*, y*) =
f

x
(x*, y*)

f
y
(x*, y*)

ì

í
ï

îï

ü

ý
ï

þï    

H(x*, y*) =
f

xx
(x*, y*) f

xy
(x*, y*)

f
xy

(x*, y*) f
yy

(x*, y*)

é

ë

ê
ê
ê

ù

û

ú
ú
ú

and

Gradient Hessian
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Necessary conditions for the minimum of f(x,y)

  

Ñf (x*, y*) =
f

x
(x*, y*)

f
y
(x*, y*)

ì

í
ï

îï

ü

ý
ï

þï
=

0

0

ì
í
ï

îï

ü
ý
ï

þï

Second order term is negligible and the first 
order term should be zero for small
So, 

  
d x*,d y*( )

This has two scalar equations in it.

  

f
x
(x*, y*) = 0

f
y
(x*, y*) = 0

Two variables (x*,y*) to be 
found using two scalar 
equations!
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Sufficient condition for the minimum of f(x,y)

   
* * * * *

* *

* *

*

* *

*

*

( , ( , )1

( , ) (
0 for an

)
,

2
y

,

xx xy

xy yy

f x y f x y x
x y

f x y f x
y

y y
x

   
     

    

  

   
*

* * * *

*

* *1
( , ) 0 for n ,

2
a y x

x
x y x y y

y

 
   


  


H

A matrix that has this property is said to be positive definite.
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Positive definite, and other definite things…
 

 

 

 

 

 

* *

* *

* * *

*

* *

* * *

*

* *

* * *

*

* *

* * *

*

* *

* * *

*

or any ,

1
( , ) 0

2

1
( , ) 0

2

1
( , ) 0

2

1
( , ) 0

2

1
( , ) 0

2

F x y

x y
x y x

y

x y
x y x

y

x y
x y x

y

x y
x y x

y

x y
x y x

y

 

 
   
 
  

 
   
 
  

 
   
 
  

 
   
 
  

 
   
 
  

H

H

H

H

H

Positive definite H; minimum.

Positive semi-definite H; minimum 
or flat.

Negative definite H; maximum.

Negative semi-definite H; maximum 
or flat.

Null-definite H; just flat; neither 
minimum nor maximum.
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Peaks, valleys, folds, ridges, and flat planes…

Positive definite H; minimum; Bottom of a valley

Positive semi-definite H; minimum or flat; A valley fold 

Negative definite H; maximum; Peak of a hill 

Negative semi-definite H; maximum or flat; A ridge 

Null-definite H; neither minimum nor maximum; Just flat 

The surface represented by f(x,y) locally looks like this at (x*,y*).
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Indefiniteness of a matrix

   
*

* * * * * *

*

1
( , ) ? 0 for any ,

2

x
x y x y x y

y


 

    
 

H

It is positive sometimes and negative sometimes… it 
is indefinite. Then, (x*,y*) is a saddle point.

http://explore.org/photos/2238/horse-saddle

http://www.pringl
es.com/products

Minimum one way 
and maximum the 
other way!
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Function of n variables

   

f (x) = f (x*) +
¶ f (x*)

¶x
ii=1

n

å (x
i
- x

i

*) +

1

2

¶2 f (x*)

¶x
i
¶x

jj=1

n

å
i=1

n

å (x
i
- x

i

*)(x
j
- x

j

*) + O(3)

           = f (x*) +Ñf T (x*)Dx
* +

1

2
Dx

*T
H(x*)Dx

*+ O(3)

Taylor’s series expansion…

17



Structural Optimization: Size, Shape, and TopologyME260 / G. K. Ananthasuresh, IISc

Gradient of an n-variable function

    

Ñf (x*) =

¶ f

¶x
1

¶ f

¶x
2

¶ f

¶x
n

ì

í

ï
ï
ï
ï
ï

î

ï
ï
ï
ï
ï

ü

ý

ï
ï
ï
ï
ï

þ

ï
ï
ï
ï
ï

  =

0

0

0

0

0

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

Necessary 
condition:
n variables;
n equations.
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Hessian of an n-variable function

    

H(x) =

d 2 f

dx
1

2

¶2 f

¶x
1
¶x

2

¶2 f

¶x
1
¶x

n

¶2 f

¶x
2
¶x

1

d 2 f

dx
2

2

¶2 f

¶x
n
¶x

1

¶2 f

¶x
n
¶x

n

ì

í

ï
ï
ï
ïï

î

ï
ï
ï
ï
ï

ü

ý

ï
ï
ï
ïï

þ

ï
ï
ï
ï
ï

Sufficient 
condition:
H should be 
positive 
definite for a 
minimum of 
f(x)
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Rules of checking positive definiteness

H is 
positive 
definite 

All Eigen-
values are 
positive

All principal 
minors are 

positive

Pivots are positive in 
the row-echelon form
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For other “definitenesses”…

Quadratic form 
Eigen values of Nature of 

Positive Positive 
definite

All are positive Local min

Negative Negative 
definite

All are negative Local max

Non-negative Positive semi-
definite

Some zero, others 
positive

A valley fold

Non-positive Negative semi-
definite

Some zero, others 
negative

A ridge 

Any sign Indefinite Mixed signs Saddle point

   d x*T H(x*)d x*  H
 H   x

*

21



Structural Optimization: Size, Shape, and TopologyME260 / G. K. Ananthasuresh, IISc

Fermat’s problem

22

Glass Air

Light travels faster in 
air than in water. So, to 
go from A to B, light 
takes the path of 
shortest time, not 
distance.

B

A

Which path 
does light ray 
take then?
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Fermat’s conjecture

23

Glass Air
B

A

17th century amateur mathematician, 
Fermat (1601-1665), had conjectured that 
light rays take the shortest-time paths 
and not shortest-distance paths.

This is clear from the fact that light rays 
bend when they pass from one medium 
to another but will travel straight in one 
medium.

Here, light will take a slightly longer 
path in air than in water because it can 
travel faster in air.

How do we find h?

L

H

h



Structural Optimization: Size, Shape, and TopologyME260 / G. K. Ananthasuresh, IISc 24

Glass Air
B

A
L

H

h

Bending of light ray (refraction)
Let va be the speed of light in air and vg

be that in glass.

Then, time of going from A to B =

T =
sa

va

+
sg

vgsa

sg

sa = la

2 + H - h( )
2

sg = lg

2 + h2

lg la

 
22 2 2

g

Min

: , l , , ,

a g

a g

a

h

a g

h hl H l
T

v v

Data l H v v

  
 
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Finding h

25

Min
h

T =
la

2 + H - h( )
2

va

+
lg

2 + h2

vg

dT

dh
= 0

Þ
-2 H - h( )

va la

2 + H - h( )
2

+
2h

vg lg

2 + h2
= 0

Þ
H - h( )

va la

2 + H - h( )
2

=
h

vg lg

2 + h2

Glass Air
B

A
L

H

h

sa

sg

lg la

(first derivative is zero for a minimum)
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Light ray follow’s Snell’s rule; 
the rule follows from optimization.

26

Glass Air
B

A
L

H

h

Þ
H - h( )

va la

2 + H - h( )
2

=
h

vg lg

2 + h2

Þ
sinqa

va

=
sinqg

vg

qa

qg

Snell’s law of 
refraction.

So, light rays optimize the time taken for them to 
go from a point to another. Reflection too follows 
the same optimal path. Try it.

We solved a calculus of variations problem as a finite 
variable optimization problem because we assumed 
that light follows straight paths in air and glass.
It is a non-smooth path. We will re-visit it later from 
the viewpoint of calculus of variations.
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The end note

ThanksU
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Gradient
Hessian

In two variables, we have peaks, valleys, fold, ridges, and flat planes…

Only local minimum can have conditions that can easily checked.
Global minimum does not have “operationally useful” definition or conditons.

Rules for checking positive definiteness of a matrix.

Necessary condition: first order derivative is zero.
Sufficient condition: second order derivative is positive (or positive definite)
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And we derived Snell’s rule of refraction using optimization.


