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Outline of the lecture
How do constraints influence the ability to minimize the objective 
function?

The concept of Lagrange multipliers

Feasible space

Active and inactive constraints

Necessary conditions

What we will learn:

Constrained optimum lies on the boundary of the feasible space.

Conditions for constrained local minimum; constraint qualification

Sensitivity of the constrained optimum to small changes in constraints.

Physical meaning of Lagrange multipliers. 
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Two variables and an equality constraint
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Min
x1,x2

f = -x1x2

Subject to

x1 + x2 = 1

(The intent here is to maximize the 
product of two numbers such that their 
sum is equal to 1)

One easy way to solve this 
problem is to eliminate either 
x1 or x2 by expressing in terms 
of the other using the equality 
constraint and make this an 
unconstrained problem in one 
variable.
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But this kind of explicit elimination 
of a variable may not always be 
possible. What do we do then?
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Eliminate a variable in the first order 
approximation
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Let the first order perturbations be: 

Now, consider first-order approximations  of 
the objective function and the constraint.
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After eliminating one variable’s first-order 
perturbation in terms of the other…
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Because the 
first order 
derivative 
should be 
zero for 
any d x1
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Some generality and a new concept
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Two things are remarkable about the two equations we got: (i) they are 
similar and (ii) they both give a similar expression for the constant,    .l

l This is called the Lagrange multiplier corresponding to the equality constraint.

Think about what the Lagrange multiplier physically means…
It is the negative of the ratio of the rate of change of objective 
function to the rate of change of the constraint with respect to either 
variable.



Structural Optimization: Size, Shape, and TopologyME 260 / G. K. Ananthasuresh, IISc

The concept of the Lagrangian
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Min
x1,x2

f (x1, x2 )

Subject to

h(x1, x2 ) = 0
Min
x1,x2

L = f (x1,x2 )+ l h(x1,x2 )

An alternative formulation…

Both have the 
same 
necessary 
conditions!

L is called 
the 
Lagrangian.
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General problem in two variables and 
one equality constraint
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Min
x1,x2

f (x1, x2 )

Subject to

h(x1, x2 ) = 0

Min
x1,x2

L = f (x1,x2 )+ l h(x1,x2 )
Þ

Three variables 
And three 
equations!

We are fine.

(x1,x2,l)
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n variables and m equality constraints
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Min
x1,x2 , ,xn

f (x1, x2 , , xn )

Subject to
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m > n

m = n

m < n

Can there be more constrains than variables?

No; feasible values may not exist. It is over-constrained.

Some discrete feasible values may exist; but cannot do minimization.

This must be true in order to do minimization of the objective function.
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Feasible space; partitioning variables
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If there are m constraints (note: m < 

n), we can choose only (n-m) 
variables freely because m variables 
can be found using the m equality 
constraints.

So, we search in the (n-m)-
dimensional feasible space.

Feasible space is the reduced space 
that satisfies the constraints.

When we say it is (n-m)-dimensional, 
we mean that m variables are 
somehow eliminated using m
equality constraints.  

Let us partition n variables in 
to s (solution or dependent) 
variables and d (decision or 
independent variables).
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Taylor series again
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Approximated to first order.

As per 
partitioned 
variables.   

f (x) = f (x*) +
¶ f (x*)

¶x
ii=1

n

å (x
i
- x

i

*)+ O(2)

           »  f (x*) +Ñf T (x*)Dx*

           »  f (x*) +Ñ
s
f T (x*)Ds

*+Ñ
d

f T (x*)Dd
*

For the necessary condition, we want the first order terms go 
to zero; then, the function value does not change in the 
vicinity of the minimum up to first order.
But we know that perturbation in s variables cannot be 
independent of those in d variables. So… (next slide)
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Taylor series for equality constraints
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Because x* is 
feasible; i.e., 
it satisfies 
the 
constraints.

As per 
partitioned 
variables.

0

Because x
should remain 
feasible after 
perturbation 
from x*.
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Eliminating s-perturbations
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** * *(( ))T T  dsh x x ds h 0 Compact notation for all constraints.

  m´1
 m´ m   m´ (n - m)

  (n - m) ´1
  m´1

Note the sizes of the quantities.

   
ÞDs* = - Ñ

s
hT (x*)é

ë
ù
û

-1

Ñ
d
hT (x*)Dd*

Remember that we can take the inverse of the m x m matrix here only 
if it is not singular. This implies that the gradients of the constraints 
should be linearly independent.  This is known as constraint 
qualification. 
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Reduced gradient
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   Ñz(d)Reduced gradient in the 
p=n-m space.

Think of f as z that depends 
only the d variables
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The multipliers, again
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Reduced gradient is 
zero is the necessary 
condition.

Where we used the new symbol for 

Lagrange multipliers 
appear again.
Compare with the two-
variable case on slide 5 of 
this lecture.
Same story here!

Notice that both equations 
have the same form; one is 
gradient w.r.t. to d and the 
other w.r.t. s.
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The Lagrangian
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With

is a row vector.

1

0
j

j

ji i

hf

x x
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  

 
    i =1,2, ,n

We have n scalar equations here.
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Necessary conditions for equality-
constrained minimization problem
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Min
x

f (x)

Subject to

h(x) = 0

Variables: n+m

Equations: n+m

So, we are fine.
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Geometric interpretation
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This means that the gradient 
of the objective function is a 
linear combination of the 
gradients of the constraints. 

2
x “Contours” or “level-set curves” of f(x1,x2)

increases f


1 2

( , ) 0h x x

Here, at the constrained 
minimum, the gradients 
of f an h are in the same 
direction.

f

h
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With inequality constraints
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Min
x

f (x)

Subject to

h(x) = 0

g(x) £ 0  gk (x) £ 0 k =1,2, , p

p inequality constraints.

Inequality constraints may be active or inactive at the minimum point.

g = 0 g < 0
Active constraints should 
be treated just like 
equality constraints. 

Inequality constraints may 
simply be ignored because 
they don not play any role.
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Complementarity conditions
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How do we know if an inequality constraint is active or not?
We don’t. 
So, we express it in the form of equations!

 mkgk = 0 k =1,2, , p

Lagrange multiplier 
corresponding to kth

inequality constraint

This is an interesting  set 
of equations:

Either multiplier is zero 
or the constraint is zero.

They are called 
complementarity 
conditions.

Both may also be zero under 
special situations.
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Necessary conditions for constrained 
minimization with equalities and inequalities.
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Min
x

f (x)

Subject to

h(x) = 0

g(x) £ 0
Variables: n+m+p

Equations: n+m+p

So, we are fine..
But we are not done yet.
The Lagrange multipliers of inequality constraints are 
restricted in sign. Let us discuss why.
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Inequality constraint; simplest problem
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Feasible region

Constrained 
local 
minimum

( )f x

x

For x* to be a local minimum.

For x* to continue to satisfy 
the inequality even after 
perturbation.
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Minimizability vs. feasibility
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But necessary condition requires:

Multiply both sides by

  0

So, this has to be non-negative.
That is, 

It is a simple but a good 
explanation for the non-
negativity of the Lagrange 
multipliers of inequality 
constraints.
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Necessary condition for general 
constrained minimization problem
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Min
x

f (x)

Subject to

h(x) = 0

g(x) £ 0
Variables: n+m+p

Equations: n+m+p

Number of inequalities: p
The first condition follows from the Lagrangian.
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Necessary conditions: KKT conditions
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Min
x

f (x)

Subject to

h(x) = 0

g(x) £ 0

Karush-Kuhn-Tucker conditions.

Had done this in his master’s thesis at University of Chicago before Kuhn and Tucker.

Independently done at Princeton University; later Kuhn dug up Karush’s 
work and gave credit that is due to him. A rare and admirable gesture.
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A caveat: constraint qualification
KKT conditions are applicable as “necessary 
conditions” only if the constraints qualification is 
satisfied.

Constraint qualification requires that the gradients of 
the equality constraints and active inequality 
constraints be linearly independent at the optimum.
◦ See slide 13.

◦One can construct special example where a point is a 
minimum but KKT conditions are not satisfied.
◦ How can “necessary” conditions be not satisfied?

◦ It is because at such special points “constraint qualification” is not 
satisfied. So, KKT conditions are not applicable.
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The end note

27

Thanks

N
ec

es
sa

ry
 c

o
n

d
it

io
n

s 
fo

r 
fi

n
it

e-
v

ar
ia

b
le

 c
o

n
st

ra
in

ed
 o

p
ti

m
iz

at
io

n

Constraint qualification

Karush-Kuhn-Tucker necessary conditions

Two variables and one equality constraint
The concept of Lagrange multiplier and the Lagrangian

Feasible space
Reduced gradient with equality constraints
Lagrange multipliers

Inequality constraint and the implication of 
the sign of the Lagrange multiplier
Complementarity conditions


