Lecture 3a

Necessary Conditions for
Finite-variable
Constrained Minimization

ME260 Indian Institute of Science

Structural Optimization: Size, Shape, and Topology
G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bengaluru

sssss h@iisc.ac.in



mailto:suresh@iisc.ac.in

Outline of the lecture

How do constraints influence the ability to minimize the objective
function?

The concept of Lagrange multipliers

Feasible space

Active and inactive constraints

Necessary conditions

What we will learn:

Constrained optimum lies on the boundary of the feasible space.
Conditions for constrained local minimum; constraint qualification
Sensitivity of the constrained optimum to small changes in constraints.

Physical meaning of Lagrange multipliers.



Two variables and an equality constraint

Min f = =X X, (The intent here is to maximize the
102 product of two numbers such that their
Su bj ect to sum is equal to 1)
X +x, =1 Min f = —x (1—x)
X

One easy way to solve this
problem is to eliminate either
X; Or X, by expressing in terms
of the other using the equality
constraint and make this an
unconstrained problem in one
variable.

or
Min f =—(1-x,)X,
X2
But this kind of explicit elimination

of a variable may not always be
possible. What do we do then?
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Eliminate a variable in the first order
approximation

Min f(x1’ xz) Let the optimum be: (x,,x,) X
- Dx, =x, - x,

_ Let the first order perturbations be: _ .
Subject to Dx, = x, - x,

A =20 Now, consider first-order approximations of
(xli Xy ) — the objective function and the constraint.

f(xl,xz)zf(xl,x2)+a—f Dx1+_f Dx,
Alig Pl
. . Oh oh oh oh
[ o V/lan| )
= Dx, = —L Dx1J L J
Ol %l




After eliminating one variable’s first-order
perturbation in terms of the other...

With Ax, = —[ah Axlj / {ah J
Ml s, Ml
B
o o« Of of X% « o« Of oh
f(x,x)=f(x, — —— — = f(x,, — A +A—] A
(%, %) = (% x2)+6x1 . X, o) [on (% x2)+@x1 . X, + .. X,
OX, |, <
of / Because the
{Gx . J (ﬂ | I(% ) -0 first order
where 4 =—~— % L@xl o J k@xl o J derivative
{ oh ] ( - \ should be
Xy |« of Oh zero for
%% — + J| — =0
Il Y




Some generality and a new concept

Two things are remarkable about the two equations we got: (i) they are
similar and (ii) they both give a similar expression for the constant, /.

(ol N, Lo (ol V(o] )
Laxlx;,x;J ”La"lx:,x;J : Lg)];x*x* ) L;{ZX*; )
Corl Y [on] ) I T Y T
Lﬁxz x;,x;J " IL 0x, x;,x;J - /l Laxlxl,x;J Laxle,x;J

I This is called the Lagrange multiplier corresponding to the equality constraint.

Think about what the Lagrange multiplier physically means...

It is the negative of the ratio of the rate of change of objective
function to the rate of change of the constraint with respect to either
variable.



The concept of the Lagrangian

Min f(x,,x
X1,Xp f( : 2) An alternative formulation...
Subject to Min L= f(x,x,)+ I h(x,x,)
h(xl’xz) = O Both have tile:xz
N necessary f L is called
ondltlons' th e

o o) 0 Lagrangian

()., J ek '

Corl Y Lanl )

+/ 0
L@xz J L@xz J




General problem 1n two variables and
one equality constraint

Min f(x,,x,)

% > Iylin L=f(x,x,)+ Ih(x,x,)
Subject to o
h(x,x,)=0
of oh
> 8 —+A—=0  Three variables /|
c (X1, x5, 1)
§ O axl 8X1 And three v
§ ;; i " 8_h 0 equations!
7 8 OX, O, We are fine.
h(Xl’ Xz) =0
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n variables and m equality constraints
I\/Iln f(x,x,,,x)) Min f(x)

X7 &

SLI'OJeCt to % Subject to
h(x,x,,+,x,)=0 o _
hres)=0 B O

( X, | | hy (X, %y,
h, (X127, ) = 0 x={ "2 Land h=" (01 g1
Can there be more constrains than variables? o (3

m >N No; feasible values may not exist. It is over-constrained.

m =n Some discrete feasible values may exist; but cannot do minimization.

m < n This must be true in order to do minimization of the objective function.
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Feasible space; partitioning variables

Let us partition n variables in

If there are m constraints (note: m < to s (solution or dependent)
n), we can choose only (n-m) variables and d (decision or
variables freely because m variables independent variables).
can be found using the m equality ) o .
constraints. Xy 51

So, we search in the (n-m)- X, S,
dimensional feasible space. : :
Feasible space is the reduced space I P IR IO I
that satisties the constraints. T 1 () d, (=
When we say it is (n-m)-dimensional, X Jd

we mean that m variables are " :2
somehow eliminated using m a’.
equality constraints. R
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Taylor series again

F(x) = f(x )+Z§f(" J(x - x")+ 0(2)

l

~ f(x)+Vf'(x )Dx  Approximated to first order.

As per
~ f(x7)+ + partitioned
variables.
For the necessary condition, we want the first order terms go
to zero; then, the function value does not change in the
vicinity of the minimum up to first order.
But we know that perturbation in s variables cannot be
independent of those in d variables. So... (next slide)
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Taylor series for equality constraints

. n Oh (X)) )
h(x)=h(xX)+) éx (x - x )+ O(2) j=12,--m
=1 i
As per
~ hj (x")+ thT (x )Dx parjcitioned
variables.

0
R h/&k) +Voh' (x)Ds + thjT(x*)Dd* =0

T~

Because X" is Because X
feasible; i.e., should remain
it satisfies |V /' (x )Ds +V /' (x )Dd =0| feasible after
the . - perturbation
constraints. from X".



Eliminating s-perturbations

+ =0 j=12:m
0 Compact notation for all constraints.
¥ ¥ Note the sizes of the quantities.
m~ m m (n m) m~ 1

m~ 1 (n-m)~1

Remember that we can take the inverse of the m x m matrix here only
if it is not singular. This implies that the gradients of the constraints
should be linearly independent. This is known as constraint
qualification.
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Re duced gradient K Should be zero for

the necessary

f(x)= f(x*) +[VSfT (x )Ds + VdfT (x")D d*] condition for a

minimum.

With D5 =-[V ' (x) | V0 (00a

Weget V /' (x)Ds+V /' (x )Dd =0
VOO VT () ]V, (x)Dd + v, /7 (x)Dd =0
{—vs ' (x*)[vsllT(x*)]'1 Vh' (x)+V_ 1’ (x*)} Dd =0

\ )

Y .
Reduced gradient in the Vz(d) Think of f as z.that depends
p=n-m space. only the d variables




Reduced gradient is

The multipliers, again = ,erois the necessary

condition.

V)] =0
A =()

Where we used the new symbol for \
~1

A= [VShT(X*)]\ AV W (x)+V, fT(x")=0

Lagrange multipliers — AV h’ (X*) LV fT (X*) =0
appear again. ; >

Compare with the two- Notice that both equations
variable case on slide 5 of have the same form; one is
this lecture. gradient w.r.t. to d and the
Same story here! other w.r.t. s.
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The Lagrangian

AV h"(x)+V_fT(x)=0 >
AV h'(x)+V_fT(x)=0
AVh (x)+V fT(x")=0

With = f+Ah

L:f_l_iﬂ'jhj fo(x*)—l—vxh(x*)?\,T = ()

—> —— + A—J:O = oo
A ox ,21: ' ox i=L2em

IS a rOW vector. We have n scalar equations here.
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Necessary conditions for equality-
constrained minimization problem

Min f(x)
Subject to
h(x)=0

vV f(X )+V h(x ))\,T = () Variables: n+m

Equations: n+m
h(x ) = () So, we are fine.
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Geometric interpretation
s AT This means that the gradient
V f(x)+V h(x )A" =0 of the objective function is a
o & oh linear combination of the

- v +, 1 A; a_xj =0 i=12,n gradients of the constraints.
i m i

Xy | “Contours” or “level-set curves” of f(X;,X,)

f INncreases

Here, at the constrained
minimum, the gradients
of fan h are in the same
direction.

AVh h(x,,x,)=0
> Xl
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With inequality constraints

Min ()

Subject to
h(x)=0 p inequality constraints.

e()E0 = GX)EDK=120mp

Inequality constraints may be active or inactive at the minimum point.

g=0 g<0
Active constraints should Inequality constraints may
be tre.ated Just 11!<€ simply be ignored because
equality constraints. they don not play any role.



Complementarity conditions

How do we know if an inequality constraint is active or not?

We don't.

So, we express it in the form of equations!

mg,=0 k

Lagrange multiplier
corresponding to kth
inequality constraint
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This is an interesting set
of equations:

Either multiplier is zero
or the constraint is zero.

They are called
complementarity
conditions.

Both may also be zero under
special situations.
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Necessary conditions for constrained
minimization with equalities and inequalities.

Min £(x)
) V f(x)+V. hGxHA +V g(x)u” =0

Subject to * *
g(X)£0 ,legk(X*):O; k:1929"°9p

Variables: n+m+p
Equations: n+m+p
So, we are fine.
But we are not done yet.
The Lagrange multipliers of inequality constraints are
restricted in sign. Let us discuss why.
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Inequality constraint; simplest problem
flx) . g(x)

s

| )=+ L a4 o)
Constrained d X
local

minimum

\%

RIS

X f(x)Ax =0
= | |

Feasible region For x” to be a local minimum.

g(x )= g(x )+ ag(x ) Ax +0O(2)
dx

\ , For x" to continue to satisfy
= g'(x JAx < 0 ] the inequality even after

perturbation.



Minimizability vs. feasibility
f'(x)Ax =0 g'(x)Ax <0

But necessary condition requires: f (x )+ 1 35% (x)=0
Multiply both sidesby Ax : f (X )Ax +u ¢'(x )Ax =0
C > J \ v J
It is a simple but a good > 0 <0
explanation for the non- v
negativity o the Lagrjcmge So, this has to be non-negative.
multipliers of inequality That is > ()
constraints. rH =
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Necessary condition for general
constrained minimization problem

Min f(x)
o V. f(x)+V h(xHL +V gx)Hun' =0
Subject to h(x)=0: 2 (x')<0
x )=0; X )<
h(x)=0 (x") ik >0; k=12
X )=V, = U, — L4,

Variables: n+m+p

Equations: n+m+p

Number of inequalities: p
The first condition follows from the Lagrangian.

L= f(x)+Ah(x")+ug(x")
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Necessary conditions: KKT conditions

Min £(x)

Subject to
h(x)=0
g(x)£0

Karush-Kuhn-Tucker conditions.

V f(x)+V hxHA +V gxHp' =0
h(x)=0; gk(x*)SO
U, gk(x*)zo; u, 20, k=12,---,p

\ J
\ N
Independently done at Princeton University; later Kuhn dug up Karush’s
work and gave credit that is due to him. A rare and admirable gesture.

Had done this in his master’s thesis at University of Chicago before Kuhn and Tucker.

ME 260 / G. K. Ananthasuresh, IISc Structural Optimization: Size, Shape, and Topology 25



A caveat: constraint qualification

KKT conditions are applicable as “necessary
conditions” only if the constraints qualification is
satistfied.

Constraint qualification requires that the gradients of
the equality constraints and active inequality
constraints be linearly independent at the optimum.
See slide 13.
One can construct special example where a point is a
minimum but KKT conditions are not satisfied.
How can “necessary” conditions be not satistied?

It is because at such special points “constraint qualification” is not
satistfied. So, KKT conditions are not applicable.



The end note

Two variables and one equality constraint
The concept of Lagrange multiplier and the Lagrangian

Feasible space
Reduced gradient with equality constraints
Lagrange multipliers

Constraint qualification

Inequality constraint and the implication of
the sign of the Lagrange multiplier
Complementarity conditions

Necessary conditions

Karush-Kuhn-Tucker necessary conditions
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