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Outline of the lecture

Feasible perturbations

Second-order term in the Taylor series of an n-variable function
Suftficient conditions for constrained minimization

Bordered Hessian

What we will learn:

How to interpret feasible perturbations around a constrained local
minimum

Positive definiteness of the Hessian is an overkill

How to check positive definiteness of the Hessian over the feasible
perturbations

Significance of the bordered Hessian



Re-cap of KKT conditions

Min £(x)

Subject to
h(x)=0
g(x)£0

The first of KKT conditions says that the gradient of the objective function is a
linear combination of the gradients of the equality and active inequality
constraints.

V f(x)+V hxHA +V gxHp' =0
h(x)=0; gk(x*)SO
uog,(x)=0; p, 20; k=12,---,p

Lagrange multipliers of inequality constraints cannot be negative; those of
equality constraints can be of any sign.

Complementarity conditions (the third line) help decide if a constraint is active or
inactive.
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What if we maximize?

Max f(x)
o V f(x)+V hxHA +V gxHp' =0
Subject to h(x)=0: 2 (x')<0
x )=0; <
h(x)=0 x) é;kx 0 =11
X —= VU, =V, — L4,

Notice the change in the sign of the Lagrange multipliers.

Now they need to be non-positive; that is, they cannot be positive.
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What if we flip the inequality sign?

Min £(x)
’ V. I (X)+V hEA +V. gxX)p" =0

Subject to M) = 0 () > 0
X )=0U, X )=
h(x)=0 (x) ?)k <0; k=12
X — ; — 1 — 4, 4,00,
g(X)3O My 9 yam P

Notice the change in the sign of the Lagrange multipliers.

Now they need to be non-positive; that is, they cannot be positive.
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What if we maximize and flip the
inequality sign?

Max f(x)
o VIO +V. hOOA +V. g’ =0
Subject to h(x *§X )o+ " (()i))> 0+ 90Om
X ) =0: X)) >
h(x)=0 o) %k o k1o
X )=V, = U, — 4,4,
g(X)3O M Gy Hy P

Notice the sign of the Lagrange multipliers.

Now they need to be non-negative again.
Two negatives annul each other’s effect.

ME 260 / G. K. Ananthasuresh, IISc Structural Optimization: Size, Shape, and Topology 6



Feasible perturbations; constrained
subspace

For sufficient conditions, we need to consider only the feasible
perturbations.

Consider m equality constraints plus active inequality
constraints such that they are linearly independent.

Together, they represent a “hyper surface” of
dimension (n-m).

S:{x*eR”

h(x')= O}

We need to verity sufficiency by taking perturbations only in S, which is called the
constrained subspace.
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First order term of 1(X) in the constrained

Sub Space Recall from Slide 14 in Lecture 3

V TAX =V T (X)AS +V, fT(x)Ad"
={—Vs £ OC) [V () ] VT () +V, 7 (x*)} Ad”

where Ds = - [VShT (x*)]_1 thT (X*)Dd*

After eliminating the s-variables, we can think of f as some other
function z that depend only on d. So, we can write in a shorthand
notation:

oS

oz' o os o ) e
od &s od +c'9d where %——[Vsh (x )] V.h (x)

T
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Check the matrix sizes

VITAX =V T (X)As +V ' (X)Ad

1Xn nXxI1 1Xm m X1 1X(mn-m) (n-m)x%x1

:{_vs £ ) [V ()] VT () +V, £ (x*)} Ad”

IXm m X m m X (n-m) 1 X (n-m) (n-m) X 1

Ds” = -[ V.0 (x) | V,h (x')Dd’

mX1 m X m mX(n-m) (n—m)Xl



Second-order derivative (Hessian) of f in
the constrained space

oz’ _of o5 o

od o6s od ad

By ditferentiating the above first derivative, we get the second
derivative,

iz _ d [afT ds]+i[a_fT]
dd* dd| ds dd | dd| od
f d £d§}+ dlaf |ds af of ds
ds dd\dd ) dd| ds |dd od*> odosdd

T T T
_of dzs+ds 82f+ds <'92]f(;ls+<92f+ o’ f ds
ds dd*> dd dsod dd os*’ dd od® odosdd
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Hessian of f in the constrained space
(contd.)

2 _3f d's ds Of ds Ofds f 9f ds

dd> 0s dd* dd 9dsdd dd 9s® dd od*> odosdd

r ST A .

d’z Sl adr ada L af dls
> = I ﬁ > ) ) S 3 aS >+ >
dd dd af J°f i ds dd

| dsod  9s° |- ’

d’s |
dd’

,i.e., using h=0.

In the above expression, we know how to compute all quantities except

ds
dd

This, we will compute in the same way as we did for
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Hessian of the constraints in the

constrained space

also be to be zero for feasibility. Therefore...

h=0
dzh:< : ﬁT
dd? dd
2 PR
N d-s _ B_h
dd? 0s
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Requires that the second-order perturbation of the m constraints

=0

o’h  9°h . ) ;
| od* odds || o [, oh d's_
) o0’h  0d°h a_d Js dd’
| dsod  0s® | ’
| &h o’h :
| ods | od® adas || o
dd o0’h  9°h a_d
| dsoad  0ds® |
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From Slides 10 and 11...

d’z
dd’

=<

0s

T
Recall from Slide 15 in Lecture 3 that _ Jdf {E)h
ds

I

of

T

ds

\

dd

ds

T
dh

N

o f

o f

od’
o f
. dsad

-1,

| 1

T
s’ |

dd

dd ds
o f
0s’

N\

J

0°h

dan

0°h

od”
o0°h
dsod

dd ds
o'
0s”

ds

}x




And now, the complete Hessian in the
constrained space...

_ _ The long
) | 9L 9L | 1 expression of the
d%z Js T 342 odos 1 last slide reduces
14> -1 — 2 I 1 ds ¢ to this because of
\ d — od the way we had
| dsod  0s® | ) defined the

L ian, L.
Where L= f+Ah agrangian

This is the sufficient condition for the

2
Ad?! dz Ad >0 <}:| constrained minimum.
dd’ Note that the perturbations are only

in the independent d variables.

ME 260 / G. K. Ananthasuresh, IISc Structural Optimization: Size, Shape, and Topology 14



Sufficient condition for a constrained
minimum

2 2 2
AdT d°z Ad*:Ad*Ta LAd*+Ad*T 0°L dsAd*+
dd’ 8d2 odds dd
2 T 2
AT ds aLAduAd*T ds | d°L| ds Ad > 0
dd )] dsod dd | o0s* | dd
ds ds ' o7
Note: %Ad =As and Ad (dd] = AS Therefore, we get:
2 2 2
AdT| P2 |Ad = AdTa—Ad cAdT 2L As 4
dd’ od’ dd ds
2 2
As ' oL Ad +As’ a—As > 0
dsod 0s’
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Sufficient condition for a constrained

minimum
L
od

Ad’

=>{ As Ad }

Ad +Ad’”T

0°L

As +As’
od ds
0’L  9°L
od> 9ddos
o°’L  9°L
dsod  0s’

0°L

dsod

|

= Ax " H(x)Ax > 0 with
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Where

2
Ad*+As*Ta—LAs* > 0

Vh Ax

AX = {
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Only feasible

pe

|

rtir-batiy

0
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How do we check this easily?
Ax" Hx)Ax > 0 with VhAx = 0

Note that this is a less stringent sufficient condition than
requiring the positive definiteness of the Hessian, at the
minimum point.

We want positive definiteness only in the subspace formed
by feasible perturbations in the neighborhood of the
minimum.

So, requiring positive definiteness of the Hessian is an
“overkill”!

But how do we check this restricted positive definiteness?
Next slide...
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Bordered Hessian

Ax Hx)Ax > 0 with VhAx = 0

The above condition is satisfied if the last (n-m)

principal minors of the bordered Hessian, H, (defined
below) have the sign (-1)™.

e .Vh(in; . CHIXY)

nXx

Bordered Hessian is simply Hessian of the Lagrangian bordered by the gradients of
equality and active inequality constraints.
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Bordered Hessian check

0 Vh(x’ )

0 )=_ Vh{;*";g;xm H(L(X))

Last principal minor Last-but-one principal minor Last-but-two principal minor



Example

Min f=x +x>+x x +2x:
Y ox x 1 2 2 3 3
1772773

Subject to
h=0.5(x; +x;+x.)-05=0

L=f+Ah=x +x +xx +2x, +)u{0.5(x12 +x; +x§)—0.5}

-

1+/1x1 ( 0 \
VL= 2x2+x3+7Lx2 =31 0 [
0

X +4x + Ax \
2 3 3

\

X, = 1; X, = 0; X, = 0; A=-1 isa solution. Let us check the sufficiency.



Example (contd.)

A 0 0 -1 0 0
H= 0 242 1 |=| 0 1 1

0 1 4+ A 0 1 3
Elgenvalues of H are: 1 OOOO 0.5858, and 3 4142 Not positive definite!

0 -1 0O 0 0 -1 0 0]
So, consider
the Bordered H, = -1 4 0 0 _ -1 -1 00
Hessian: 0 0 2+4 1 0 0 1 1
0 0 1 4+41 |0 0 1 3

n-m=3-1=2; So, last two principal minors should have the sign of (-1)™=-1. That is
they should be negative.

Last principal minor = -2; it is fine.

Last-but-one principal minor = -1; it is also fine. So, we have a minimum.
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The concept of optimization search
algorithms

Optimization search algorithms work like you would walk blindfolded
in a rough terrain!

They are iterative. They move from one point to another and eventually
converge to a minimum at which KKT conditions are satisfied.

They need an initial guess.
Various algorithms differ in the way they choose a search direction.

Once the search direction is chosen, the algorithms needs one-variable
search to decide how much to move in that direction. This is called the
line search.

<— [teration number
(D = 3 (B) o (g ter
\ Search direction

Updated variable Line search parameter



The end note

Recap of KKT conditions

Feasible perturbation
2nd order term in Taylor series expansion of an n-variable function with
constraints

Constrained subspace; Sufficient conditions for constrained minimization
Positive definiteness of the Hessian within the constrained subspace

Sufficient conditions for
Constrained finite-variable optimization

Constrained positive definiteness using
bordered Hessian

The concept of search algorithms




