Lecture 6

Truss optimization (contd.)

ME260 Indian Institute of Science
Structural Optimization: Size, Shape, and Topology
G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bengaluru
suresh@iisc.ac.in

Outline of the lecture

Size optimization of multi-bar trusses
Adjoint method of sensitivity analysis
Optimality criterion
What we will learn:
Solution to the size optimization of trusses
Algorithm for the optimality criteria method

Size optimization of a truss

$\underset{\mathbf{A}}{\operatorname{Min}} M C=\sum_{i=1}^{N} P_{i} u_{i}=\mathbf{p}^{T} \mathbf{u}$
Subject to
$M C=$ mean compliance $=$ work done by the external forces
$M C$ is a measure of stiffness:
the lower the value of MC, the stiffer the truss.
$\lambda: \quad \mathbf{K u}-\mathbf{p}=0$
$\mu: \quad \sum_{i=1}^{N} \rho A_{i} l_{i}-W^{*} \leq 0$ or $\rho \mathbf{a}^{T} \mathbf{l}-W^{*} \leq 0$
Data: $\rho, W^{*}, l_{i=1,2 \ldots, N}, N, P_{i=1,2 \ldots, \ldots}, E$
\mathbf{K} depends on areas of cross section of all truss elements and Young's modulus.

Size optimization of a truss

$\operatorname{Min}_{\mathbf{A}} M C=\sum_{i=1}^{N} P_{i} u_{i}=\mathbf{p}^{T} \mathbf{u}$
Subject to
$\lambda: \quad \mathbf{K u}-\mathbf{p}=0$
$\mu: \quad \sum_{i=1}^{N} \rho A_{i} l_{i}-W^{*} \leq 0$ or $\rho \mathbf{a}^{T} \mathbf{l}-W^{*} \leq 0$
Data: $\rho, W^{*}, l_{i=1,2 \ldots, N}, N, P_{i=1,2, \ldots, N}, E$

Lagrangian

$$
L=\mathbf{p}^{T} \mathbf{u}+\lambda^{T}(\mathbf{K u}-\mathbf{p})+\mu\left(\rho \mathbf{a}^{T} \mathbf{l}-W^{*}\right)
$$

Necessary conditions

$$
\begin{aligned}
\frac{\partial L}{\partial A_{i}}=0 \Rightarrow \mathbf{p}^{T} \frac{\partial \mathbf{u}}{\partial A_{i}}+\lambda^{T}\left(\mathbf{K} \frac{\partial \mathbf{u}}{\partial A_{i}}+\frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right)+\mu \rho l_{i}=0 \\
i=1,2, \cdots, N
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{K u}=\mathbf{p}, \quad \rho \mathbf{a}^{T} \mathbf{l}-W^{*} \leq 0 \\
& \mu\left(\rho \mathbf{a}^{T} \mathbf{l}-W^{*}\right)=0
\end{aligned}
$$

Tally the number of unknowns and the number of equations

$$
\frac{\partial L}{\partial A_{i}}=0 \Rightarrow \mathbf{p}^{T} \frac{\partial \mathbf{u}}{\partial A_{i}}+\lambda^{T}\left(\mathbf{K} \frac{\partial \mathbf{u}}{\partial A_{i}}+\frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right)+\mu \rho l_{i}=0 \quad i=1,2, \cdots, N \quad N \text { equations }
$$

$$
\begin{aligned}
& \mathbf{K u}=\mathbf{p} \quad n \text { equations } \\
& \rho \mathbf{a}^{T} \mathbf{l}-W^{*} \leq 0 \\
& \mu\left(\rho \mathbf{a}^{T} \mathbf{l}-W^{*}\right)=0 \quad 1 \text { equation }
\end{aligned}
$$

$$
\text { A } \quad N \text { unknowns }
$$

$$
\text { u } \quad n \text { unknowns }
$$

$$
\lambda \quad n \text { unknowns }
$$

$$
\mu \quad 1 \text { unknown }
$$

$n=$ twice the number of vertices in the truss $=$ total number of DoF

$$
(N+n+1) \text { equations in }(N+2 n+1) \text { unknowns. }
$$

Ouch... what do we do? Where are n more equations?

Finding n more equations

$$
\frac{\partial L}{\partial A_{i}}=0 \Rightarrow \mathbf{p}^{T} \frac{\partial \mathbf{u}}{\partial A_{i}}+\lambda^{T}\left(\mathbf{K} \frac{\partial \mathbf{u}}{\partial A_{i}}+\frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right)+\mu \rho l_{i}=0 \quad i=1,2, \cdots, N \quad N \text { equations }
$$

Let us see hidden n more equations by recasting the above equation.
$\left(\mathbf{p}^{T}+\lambda^{T} \mathbf{K}\right) \frac{\partial \mathbf{u}}{\partial A_{i}}+\lambda^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}+\mu \rho l_{i}=0$
Do you see n more equations yet?
No? Let us see what we can compute and what we cannot if we know the areas of cross section.

Here are n more equations

$$
\left(\mathbf{p}^{T}+\lambda^{T} \mathbf{K}\right) \frac{\partial \mathbf{u}}{\partial A_{i}}+\lambda^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}+\mu \rho l_{i}=0 \Rightarrow \lambda^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}+\mu \rho l_{i}=0
$$

$$
\left(\mathbf{p}^{T}+\lambda^{T} \mathbf{K}\right)=\mathbf{0}^{T} \quad \text { or } \quad \mathbf{K} \lambda=-\mathbf{p}
$$

This clever way of finding n more equations is called the adjoint method of sensitivity analysis.
$\mathbf{K} \boldsymbol{\lambda}=-\mathbf{p}$ This is called the adjoint (equilibrium) equation.
λ is called the adjoint (state) variable.

Now, we are set to solve the problem.

$$
\frac{\partial L}{\partial A_{i}}=0 \Rightarrow \mathbf{p}^{T} \frac{\partial \mathbf{u}}{\partial A_{i}}+\boldsymbol{\lambda}^{T}\left(\mathbf{K} \frac{\partial \mathbf{u}}{\partial A_{i}}+\frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right)+\mu \rho l_{i}=0 \quad i=1,2, \cdots, N \quad N \text { equations }
$$

$\mathbf{K u}=\mathbf{p} \quad n$ equations	\mathbf{A}	N unknowns
$\rho \mathbf{a}^{T} \mathbf{l}-W^{*} \leq 0$	\mathbf{u}	n unknowns
$\mu\left(\rho \mathbf{a}^{T} \mathbf{l}-W^{*}\right)=0$ 1 equation	λ	n unknowns
	μ	1 unknown

$\mathbf{K} \boldsymbol{\lambda}=-\mathbf{p} n$ equations
$(N+2 n+1)$ equations in $(N+2 n+1)$ unknowns.
We also have two inequalities too: $\quad \rho \mathbf{a}^{T} \mathbf{l}-W^{*} \leq 0$ and $\mu \geq 0$

Solving...

$$
\frac{\partial L}{\partial A_{i}}=0 \Rightarrow \mathbf{p}^{T} \frac{\partial \mathbf{u}}{\partial A_{i}}+\boldsymbol{\lambda}^{T}\left(\mathbf{K} \frac{\partial \mathbf{u}}{\partial A_{i}}+\frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right)+\mu \rho l_{i}=0 \quad i=1,2, \cdots, N \quad N \text { equations }
$$

$$
\mathbf{K u}=\mathbf{p} \quad n \text { equations }
$$

$$
\rho \mathbf{a}^{T} \mathbf{l}-W^{*} \leq 0
$$

$$
\mu\left(\rho \mathbf{a}^{T} \mathbf{l}-W^{*}\right)=01 \text { equation }
$$

$$
\lambda=-\mathbf{u}
$$

$$
\mathbf{K} \boldsymbol{\lambda}=-\mathbf{p} \quad n \text { equations }
$$

State variable and adjoint variable are equal.

Solving (contd.)

$-\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}+\mu \rho l_{i}=0 \Rightarrow \mu=\frac{1}{\rho l_{i}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right) \quad i=1,2, \cdots, N \quad N$ equations

$$
\mathbf{K u}=\mathbf{p} \quad n \text { equations }
$$

$$
\rho \mathbf{a}^{T} \mathbf{l}-W^{*} \leq 0
$$

$$
\mu\left(\rho \mathbf{a}^{T} \mathbf{l}-W^{*}\right)=0
$$

$$
1 \text { equation and two inequalities }
$$

$$
\mu \geq 0
$$

$$
\frac{1}{\rho l_{i}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right)=? \quad \text { What is this, physically? }
$$

Interpretation: $\frac{1}{\rho l_{t}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right)=s s_{i}$

$$
\begin{array}{ll}
S E=\frac{1}{2}\left(\mathbf{u}^{T} \mathbf{K u}\right)=\frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} k_{j k} u_{j} u_{k} \\
S E_{i}=\frac{1}{2} \sum_{j \in D o F} \sum_{k \in D o F} k_{j k} u_{j} u_{k} & s e_{i}=\frac{S E_{i}}{\rho l_{i} A_{i}}=\frac{1}{2 \rho l_{i} A_{i}} \sum_{j \in D o F} \sum_{k \in D o F} k_{j k} u_{j} u_{k} \\
\frac{\partial S E}{\partial A_{i}}=\frac{1}{2} \sum_{j \in D o F} \sum_{k \in D o F} \frac{k_{j k}}{A_{i}} u_{j} u_{k} & \begin{array}{l}
\text { Strain energy density of the } i^{\text {th }} \\
\text { element }
\end{array}
\end{array}
$$

This is only partial sensitivity; not the total
sensitivity to which we will return to later.

Since the strain energy density of all elements cannot be zero, we say that μ cannot be zero. Hence, the weight constraint is active.

Solving (contd.): Optimality criterion

$\mathbf{K u}=\mathbf{p} \quad \mu=\frac{1}{\rho l_{i}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right)$
$\left(\rho \mathbf{a}^{T} \mathbf{l}-W^{*}\right)=0$
How do we find A_{i} s?

This implies that the strain energy density is constant for all
 elements.

Since $1=\frac{1}{\mu \rho l_{i}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right)$

$$
A_{i}^{(k+1)}=\frac{1}{\mu \rho l_{i}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right) A_{i}^{(k)}
$$

k is the iteration number in optimization.

Fixed point method of solution $A_{i}^{(k+1)}=\frac{1}{\mu \rho l_{i}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right) A_{i}^{(k)}$
 Additive version
 $\begin{aligned} & \text { Multiplicative version of } \\ & \text { the optimality criteria } \\ & \text { method. }\end{aligned} \quad A_{i}^{(k+1)}=A_{i}^{(k)}+\left(-\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}+\mu \rho l_{i}\right)^{(k)}$

$$
\begin{array}{ll}
f(x)=0 & \tan x-x^{2}-1=0 \\
g(x)=f(x)+x & \text { Example } \\
x^{(k+1)}=g\left(x^{(k)}\right)=f\left(x^{(k)}\right)+x^{(k)}
\end{array}
$$

Algorithm

Step 0
Assume initial guess for all areas of cross section so that the weight constraint is satisfied.

$$
A_{i}^{(o)}, i=1,2, \cdots, N
$$

Step 1
Solve for the displacements using the loads.
$\mathbf{K u}=\mathbf{p}$

Step 2 Solve $\left(\rho \mathbf{a}^{T} \mathbf{l}-W^{*}\right)=0$ to find μ

$$
A_{i}^{(k+1)}=\frac{1}{\mu \rho l_{i}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right) A_{i}^{(k)}
$$

Step 2 and farther...

$$
\begin{aligned}
& \left(\rho \mathbf{a}^{T} \mathbf{l}-W^{*}\right)=0 \Rightarrow \sum_{i=1}^{N} \rho A_{i} l_{i}=W^{*} \\
& \Rightarrow \sum_{i=1}^{N} \frac{1}{\mu \rho l_{i}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right) A_{i}^{(k)} \rho l_{i}=W^{*} \\
& \Rightarrow \mu=\frac{\sum_{i=1}^{N}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right) A_{i}^{(k)}}{W^{*}}
\end{aligned}
$$

Step 3 Update areas of cross section.

$$
A_{i}^{(k+1)}=\frac{1}{\mu \rho l_{i}}\left(\mathbf{u}^{T} \frac{\partial \mathbf{K}}{\partial A_{i}} \mathbf{u}\right) A_{i}^{(k)}
$$

Do you see any other issues here?
Go to Step 1 until convergence.

The end note

\qquad Size optimization: problem statement and necessary conditions
Counting unknowns and equations

Algorithm for size optimization of trusses

We are we missing anything else in the algorithm? Think.

