Lecture 7b

Principle of virtual work and its implication in truss optimization

ME260 Indian Institute of Science

Structural Optimization: Size, Shape, and Topology

G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bengaluru suresh@iisc.ac.in

Outline of the lecture

- Principle of virtual work
- Unit virtual (dummy) load method
- What we will learn:
- Interpreting and using the principle of virtual work

Principle of virtual work

"External virtual work is equal to the internal virtual work."

- This is an alternative view to force balance <u>and</u> the principle of minimum potential energy.
- External virtual work = EVW = work done by the external real forces undergoing virtual displacements or work done by external virtual forces undergoing real displacements
- Internal virtual work = IVW = work done by the real internal forces undergoing virtual displacements or work done by internal virtual forces undergoing real displacements
- **EVW = IVW** is a powerful analytical tool.
- It is a thought experiment either with virtual displacements or virtual forces.

A simple example used to understand the principle of minimum potential energy

Strain energy = SE = $\frac{1}{2}kx^2$

Work potential = WP = -Fx

Potential energy = PE = SE + WP =
$$\frac{1}{2}kx^2 - Fx$$

We know from force balance:

$$F = kx^*$$

$$\underset{x}{\operatorname{Min}} PE = \frac{1}{2}kx^2 - Fx$$

$$\frac{\partial PE}{\partial x} = kx - F = 0$$

4

So,
$$F = kx^*$$

The same simple example to illustrate the principle of virtual work

 $\boldsymbol{\chi}$

Imagine virtual displacement δx

$$EVW = F\delta x$$
$$VW = kx^* \delta x \quad F = kx^*$$

Imagine virtual force δF

ME 260 / G. K. Ananthasuresh, IISc Structural Optimization: Size, Shape, and Topology

We know from force balance:

 $\Rightarrow x^* = F / k$

 $\underset{x}{\text{Min } PE} = \frac{1}{2}kx^2 - Fx$

5

 $F = kx^*$

Let us apply the principle of virtual work to trusses

 $\mathbf{K}\mathbf{u} = \mathbf{p}_{n \times 1}$

Imagine virtual displacements $\delta \mathbf{u}$ $EVW = \mathbf{p}^T \delta \mathbf{u}$ $IVW = (\mathbf{K}\mathbf{u})^T \delta \mathbf{u} = \mathbf{u}^T \mathbf{K} \delta \mathbf{u}$ because **K** is symmetric. $EVW = IVW \Rightarrow \mathbf{p}^T \delta \mathbf{u} = \mathbf{u}^T \mathbf{K} \delta \mathbf{u}$ $\Rightarrow \mathbf{p}^T = \mathbf{u}^T \mathbf{K}$ $\Rightarrow \mathbf{K}\mathbf{u} = \mathbf{p}$

Unit virtual (dummy) load method

$\mathbf{K}\mathbf{u} = \mathbf{p}$

- Imagine virtual force $\delta \mathbf{p}^T = \begin{cases} 1 & i & n \\ 0 & 1 & \cdots & 0 & 0 \end{cases}$ $EVW = \delta \mathbf{p}^T \mathbf{u}^*$
- $IVW = (\mathbf{K}\delta\mathbf{u})^T \mathbf{u}^* = \delta\mathbf{u}^T\mathbf{K}\mathbf{u}^*$
- $EVW = IVW \Longrightarrow \delta \mathbf{p}^T \ \mathbf{u}^* = \delta \mathbf{u}^T \mathbf{K} \mathbf{u}^*$ $\Longrightarrow u_i = (\delta \mathbf{u}^T \mathbf{K}) \mathbf{u}^*$
 - \mathbf{u}^* = displacements due to applied real loads

 $\delta \mathbf{u}$ = displacements due to the unit virtual load

The end note

Principle of virtual work

Applying the principle of virtual work to a simple spring

Think about the implication of the principle of virtual work for trusses

The second alternative to force balance.

The first alternative is the principle of minimum potential energy.

Thanks

8

ME 260 / G. K. Ananthasuresh, IISc Structural Optimization: Size, Shape, and Topology