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Outline of the lecture
Clayperon’s theorem

Maxwell’s rule for statically determinate trusses 

Dual problem for statically determinate trusses

What we will learn:

Maxwell’s rule with Calladine’s modification

Posing the dual problem of size optimization of statically determinate 
trusses
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Unit virtual (dummy) load method
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*
u = displacements due to applied real loads

u = displacements due to the unit virtual load
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Clayperon’s theorem
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At static equilibrium, the mean compliance is equal to twice the 
strain energy.

What? 2*MC SE

How? TEVW  p u  *
T

TIVW   Ku u u Ku

Make virtual displacement equal to real equilibrium displacement. 

* * * 2*T T MC SE  p u u Ku
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Does this make sense?
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An implication from the Clayperon’s theorem.

*

*

1,2..., 1,2,...,

1
Min Max

2

Subject to

: 0

Data: , , , , ,

T T

T

i N i N

PE

W

W l N P E

 

  

 

 

u a
u Ku p u

a l

* * * *

PE SE WP SE MC

PE SE MC SE

   

   

What? How?

Minimizing SE (or MC) 
is equivalent to 
maximizing PE w.r.t. to 
the design variable.



A small detour
ON MAXWELL’S RULE FOR TRUSSES
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Statically determinate trusses
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Maxwell’s rule
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Statically determinate trusses satisfy the Maxwell’s rule.

Statically determinate trusses are those in which internal forces 
can be computed from equations of statics without having to solve 
for dixplacements.
 Internal forces do not depend on areas of cross section of the 
truss members. 
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Try Maxwell’s rule on these
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Maxwell’s rule modified by Calladine
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How do you interpret Maxwell’s rule?
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Rank-deficiency of C indicates DoF
Rank-deficiency of H indicates SoSS.

Null-space of C indicates instantaneous 
rigid-body modes.

Null-space of H indicates self-stress modes.
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DoF and SoSS

11

2 3

16 3 12 1 2 1

v b DoF SoSS   

    

12 16 16 1 12 1  C u e 16 12 12 1 16 1  H p f

Null-space “modes” of C.

Rank deficiency = 2 (not counting 
rigid-body modes)
 2 DoF

Rank deficiency = 1
 1 SoSS
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We can also use the stiffness matrix
(finite element framework)
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Rank deficiency of the stiffness matrix
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Compatibility and equilibrium matrices give 
correct but only instantaneous DoF and SoSS.

Stiffness matrix can also be used for finding 
instantaneous (infinitesimal) DoF.

Summary
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Size optimization of statically 
determinate trusses
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Contd.
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Internal force in jth

truss member due to 
applied real loads.

Internal force in jth

truss member due to 
unit virtual load 
applied on ith DoF.
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This enables us to obtain an expression for 
each area of cross section in terms of data and 
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Dual problem
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 Max L




Now, it is a one variable unconstrained maximization problem except that      
should be non-negative.

Note that we can do this for a statically determinate truss, however large it 
may be.
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We have two methods now.
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General algorithms with outer and inner loops to find 
cross section areas of any kind of truss. 

A specific dual formulation that reduces the size 
optimization of statically determinate trusses to a one-
variable problem.

We have the Matlab code for this wherein we begin with an exhaustive 
“ground structure” with all truss elements defined between every pair of 
points in a grid of vertices.

We should check whether the resulting optimal truss is statically determinate 
or no.

Here, we need to first check if the truss is statically determinate or not using 
the Maxwell’s rule and then with the rank-deficiency of the equilibrium 
matrix.
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The end note
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Dual problem for statically determinate trusses.

Rank deficiency of the force equilibrium gives the 
number of SoSS and that of displacement compatibility 
gives the number of DoF. 

Clayperon’s theorem and its implication in stiffness optimization

Maxwell’s rule for static determinacy and Calladine’s modification

Force equilibrium and displacement compatibility matrices

Degrees of freedom (DoF) and states of self stress (SoSS)


