Lecture 17

General Variation of a Functional Transversality conditions Broken extremals Corner conditions

ME 260 at the Indian Institute of Science, Bengaluru

Structural Optimization: Size, Shape, and Topology

G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bengaluru suresh@iisc.ac.in

Outline of the lecture

- Variable end conditions: motivating examples
- General variation
- Transversality conditions
- Weierstrass-Erdman corner conditions
- What we will learn:
- Why we need to deal with variable end conditions in calculus of variations
- How to take general variation and how it affects only the boundary conditions and not the differential equation
- What broken extremals are
- How we can get the regular boundary conditions as special cases

Modified brachistochrone problem

В

Now, point B can be anywhere on a given curve represented by $\phi_2(x)$

We want to find y(x) such that an object will reach any point on $\phi_2(x)$ in the least time.

Note that the change in the problem statement comes only in the end condition and not in the functional.

ME 260/G.K.Ananthasuresh, IISc

L

Structural Optimization: Size, Shape, and Topology

3

Another modification...

Note again that the change in the problem statement comes only in the end conditions and not in the functional.

Now, point A can be anywhere on a given curve represented by $\phi_1(x)$

We want to find y(x) such that an object will reach any point on $\phi_2(x)$ starting from any point on $\phi_1(x)$ in the least time.

A general problem with variable end conditions

$$\underset{y(x)}{\operatorname{Min}} J = \int_{x_1}^{x_2} F(y, y') dx$$

What do we do when ends are not given?

Recall that we had taken a variation (a perturbation) around a minimal curve $y^*(x)$ and equated the first-order term to zero to establish the necessary condition. Here, the perturbation should be taken for $y^*(x)$ and the two ends.

"Variable ends" means that both ends can also be perturbed. That is, the domain over which we integrate is variable. In such a case, we take what is called a general variation in which ends are also perturbed. See the next slide...

General non-contemporaneous variation

(related to non-contemporary)

Now we have perturbed not only the curve but also the ends! This type of variation is called non-contemporaneous variation.

> The term "non-contemporaneous" must be in the context of time-related problems. We are shifting the x-axis. So, y and y^{*} are not defined on the same domain.

$$\Delta J = \int_{x_1+\delta x_1}^{x_2+\delta x_2} F(y^* + h, y'^* + h') dx - \int_{x_1}^{x_2} F(y^*, y'^*) dx$$

7

Extensions of the domain at either end

The first term of the first-order term...

$$\int_{x_{1}}^{x_{2}} F(y^{*} + h, y'^{*} + h') dx \approx \int_{x_{1}}^{x_{2}} F(y^{*}, y'^{*}) dx + \int_{x_{1}}^{x_{2}} \left\{ F_{y}h + F_{y'}h' \right\} dx$$

$$= \int_{x_{1}}^{x_{2}} F(y^{*}, y'^{*}) dx + \int_{x_{1}}^{x_{2}} \left\{ F_{y} - \frac{d}{dx} \left(F_{y'} \right) \right\} h dx + \left(F_{y'}h \right) \Big|_{x_{1}}^{x_{2}}$$

$$= \int_{x_{1}}^{x_{2}} F(y^{*}, y'^{*}) dx + \int_{x_{1}}^{x_{2}} \left\{ F_{y} - \frac{d}{dx} \left(F_{y'} \right) \right\} h dx + \left(F_{y'}h \right) \Big|_{x_{2}} - \left(F_{y'}h \right) \Big|_{x_{1}}$$

A result we had derived earlier.

And now...

$$\Delta J \approx \int_{x_1}^{x_2} F(y^* + h, y'^* + h') dx - \int_{x_1}^{x_2} F(y^*, y'^*) dx - F|_{x_1} \delta x_1 + F|_{x_2} \delta x_2$$

By substituting for this from the preceding slide...

$$\Delta J \approx \int_{x_1}^{x_2} \left\{ F_y - \frac{d}{dx} (F_{y'}) \right\} h \, dx + (F_{y'} h) \Big|_{x_2} - (F_{y'} h) \Big|_{x_1} - (F \delta x) \Big|_{x_1} + (F \delta x) \Big|_{x_2}$$

Recall from slide 8:

$$\delta y_1 = h_1 + y_1' \,\delta x_1 \Longrightarrow h_1 = \delta y_1 - y_1' \,\delta x_1$$

$$\delta y_2 = h_2 + y_2' \,\delta x_2 \Longrightarrow h_2 = \delta y_2 - y_2' \,\delta x_2$$

$$\Rightarrow \Delta J \approx \int_{x_1}^{x_2} \left\{ F_y - \frac{d}{dx} \left(F_{y'} \right) \right\} h \, dx + \left(F_{y'} \, \delta y \right) \Big|_{x_1}^{x_2} + \left\{ \left(F - F_{y'} \, y' \right) \delta x \right\} \Big|_{x_1}^{x_2}$$

10

Necessary condition and boundary conditions...finally.

First order is equated to zero for the necessary condition, as usual.

$$\Delta J \approx \int_{x_1}^{x_2} \left\{ F_y - \frac{d}{dx} (F_{y'}) \right\} h \, dx + \left(F_{y'} \, \delta y \right) \Big|_{x_1}^{x_2} + \left\{ \left(F - F_{y'} \, y' \right) \delta x \right\} \Big|_{x_1}^{x_2} = 0$$

By invoking the fundamental lemma, we get the differential equation:

$$F_{y} - \frac{d}{dx} \left(F_{y'} \right) = 0$$

Note that the differential equation, the Euler-Lagrange equation, did not change!

Boundary conditions

$$\left(F_{y'}\,\delta y\right)\Big|_{x_1}^{x_2} = 0 \text{ and}$$
$$\left\{\left(F - F_{y'}\,y'\right)\delta x\right\}\Big|_{x_1}^{x_2} = 0$$

Note that the boundary condition of the fixed end conditions comes out neatly when the variation in the end conditions are zero. That is, when $\delta x_1 = \delta x_2 = 0$

Boundary conditions when restricted to given curves

A
$$(F_{y}, \delta y)\Big|_{x_{1}}^{x_{2}} + \left\{\left(F - F_{y}, y'\right)\delta x\right\}\Big|_{x_{1}}^{x_{2}} = 0$$

 $\delta y_{1} = \phi_{1}'(x_{1})\delta x_{1} = \phi_{1}'\delta x_{1}$
 $\delta y_{2} = \phi_{2}'(x_{2})\delta x_{2} = \phi_{2}'\delta x_{2}$
 $y(x)$
 $\phi_{2}(x)$
 $\left\{\left(F + F_{y'}(\phi_{1}' - y')\right)\delta x\right\}\Big|_{x_{1}} = 0$
B $\left\{\left(F + F_{y'}(\phi_{2}' - y')\right)\delta x\right\}\Big|_{x_{2}} = 0$
These are called transversality conditions

These are called transversality conditions.

12

Transversality conditions

$$\left\{ \left(F + F_{y'} \left(\phi_1' - y_1' \right) \delta x \right\} \right|_{x_1} = 0$$

$$\left\{ \left(F + F_{y'} \left(\phi_2' - y' \right) \right) \delta x \right\} \Big|_{x_2} = 0$$

$$J = \int_{x_1}^{x_2} f(y) \sqrt{1 + {y'}^2} \, dx$$

$$\Rightarrow F = f(y)\sqrt{1 + {y'}^2}$$
$$\Rightarrow F_{y'} = \frac{\partial F}{\partial y'} = \frac{f(y)y'}{\sqrt{1 + {y'}^2}}$$

Transversality has something to do with being orthogonal, i.e., perpendicular. It is indeed so for certain functionals.

$$F + F_{y'}(\phi' - y') = 0$$

$$\Rightarrow f\sqrt{1 + {y'}^2} + \frac{fy'}{\sqrt{1 + {y'}^2}}(\phi' - y') = 0$$

$$\Rightarrow f(1 + {y'}^2) + fy'\phi' - fy'^2 = 0$$

$$\Rightarrow f(1 + y'\phi') = 0$$

It means that the minimal curve is orthogonal to the boundary curve!

ME 260/G.K.Ananthasuresh, IISc

Structural Optimization: Size, Shape, and Topology

13

Transversality and brachistochrone

The optimal curve is perpendicular to the two given curves at either end.

> Even though the "transversality" is limited only to special form of the functional, the name stuck for all types of functionals. What is in a name, anyway?

term.

Transversality condition for *y*" term

Resume from Slide 10 by including y" term.

$$\Delta J \approx \int_{x_1}^{x_2} F(y^* + h, y'^* + h', y'' + h'') dx - \int_{x_1}^{x_2} F(y^*, y'^*, y''^*) dx - F|_{x_1} \delta x_1 + F|_{x_2} \delta x_2$$

$$= \int_{x_1}^{x_2} \left\{ F_y - \left(F_{y'}\right)' + \left(F_{y''}\right)'' \right\} dx + \left(F_{y''}h'\right)|_{x_1}^{x_2} + \left\{ \left(F_{y'} - \left(F_{y''}\right)'\right)h \right\} \Big|_{x_1}^{x_2} + \left(F \delta x\right)|_{x_1}^{x_2}$$
From Slide 17 in Lecture 11

From Slide 10 of this lecture

$$\begin{array}{l} h_1 = \delta y_1 - y_1' \,\delta x_1 \\ h_2 = \delta y_2 - y_2' \,\delta x_2 \end{array} \Rightarrow \begin{array}{l} h_1' = \delta y_1' - y_1'' \,\delta x_1 \\ h_2' = \delta y_2' - y_2'' \,\delta x_2 \end{array}$$

Extended transversality conditions

$$\Delta J \approx \int_{x_1}^{x_2} \left\{ F_y - \left(F_{y'}\right)' + \left(F_{y''}\right)'' \right\} dx + \left(F_{y''}h'\right)\Big|_{x_1}^{x_2} + \left\{ \left(F_{y'} - \left(F_{y''}\right)'\right)h\right\}\Big|_{x_1}^{x_2} + \left(F \delta x\right)\Big|_{x_1}^{x_2} = 0$$

By invoking the fundamental lemma, we get the differential equation:

$$F_{y} - (F_{y'})' + (F_{y''})'' = 0$$

Note that the differential equation, the Euler-Lagrange equation, did not change, once again! It does not in all cases when the end conditions change. Boundary conditions

$$(F_{y''} \,\delta y')\Big|_{x_1}^{x_2} = 0$$

$$\left\{ \left(F_{y'} - \left(F_{y''} \right)' \right) \delta y \right\} \Big|_{x_1}^{x_2} = 0 \text{ and}$$

$$\left\{ \left(F - F_{y'} \,y' + \left(F_{y''} \right)' \,y' - F_{y''} \,y'' \right) \delta x \right\} \Big|_{x_1}^{x_2} = 0$$

Note that the boundary condition of the fixed end conditions comes out neatly when the variation in the end conditions are zero. That is, when

19

For two functions in one variable

$$\min_{y(x),z(x)} J = \int_{x_1}^{x_2} F(x, y, z, y', z') \, dx$$

With variable end conditions

$$x_1 = \phi_1(y, z)$$
$$x_2 = \phi_2(y, z)$$

20

$$F_{y} - \left(F_{y'}\right)' = 0$$
$$F_{z} - \left(F_{z'}\right)' = 0$$

Differential equations do not change, as usual.

Transversality conditions

$$\begin{bmatrix} F_{y'} + \frac{\partial \phi_{1 \text{or} 2}(y, z)}{\partial y} \left(F - y' F_{y'} - z' F_{z'}\right) \end{bmatrix} \Big|_{x_1}^{x_2} = 0$$

$$\begin{bmatrix} F_{z'} + \frac{\partial \phi_{1 \text{or} 2}(y, z)}{\partial z} \left(F - y' F_{y'} - z' F_{z'}\right) \end{bmatrix} \Big|_{x_1}^{x_2} = 0$$

Minimal curves need not be smooth!

$$\underset{y(x)}{\min} J = \int_{0}^{L} (F(y, y')) dx \\
= \int_{0}^{x_{c}} (F_{1}(y, y')) dx + \int_{x_{c}}^{L} (F_{2}(y, y')) dx$$

So far, we had assumed that minimum curves are smooth, i.e., the slope of y is continuous. But what if it is not?

We get a kink or a sudden bend in the curve.

Such extremal curves are called broken extremals.

They happen in problems where something in the integrand of the function suddenly changes.

In such a case, variable conditions equations come to rescue us.

21

Broken extremal conditions

$$\underset{y(x)}{\operatorname{Min}} J = \int_{0}^{L} (F(y, y')) dx$$

$$= \int_{0}^{x_{c}} \left(F_{1}(y, y') dx + \int_{x_{c}}^{L} \left(F_{2}(y, y') dx \right) dx \right)$$

For the two parts... for one on the right side and the other on the left side.

$$\left(F_{y'} \,\delta y\right)\Big|_{x_1}^{x_2} = 0 \text{ and}$$
$$\left\{\left(F - F_{y'} \,y'\right)\delta x\right\}\Big|_{x_1}^{x_2} = 0$$

$$\left((F_{y'})_{1} - (F_{y'})_{2} \right) \delta y \Big|_{x_{c}} = 0 \text{ and}$$
$$\left\{ \left(F - F_{y'} y' \right)_{1} - \left(F - F_{y'} y' \right)_{2} \right\} \delta x \Big|_{x_{c}} = 0$$

22

So...

Weierstrass-Erdmann corner conditions

$$\left((F_{y'})_{1} - (F_{y'})_{2} \right) \delta y \Big|_{x_{c}} = 0 \text{ and}$$
$$\left\{ \left(F - F_{y'} y' \right)_{1} - \left(F - F_{y'} y' \right)_{2} \right\} \delta x \Big|_{x_{c}} = 0$$

So, whenever the intermediate point is variable...

$$F_{y'}$$
 and $\left(F - F_{y'}y'\right)$ are continuous at the intermediate corner point.

Broken (non-smooth) extremals

Recall from Slide 3 of Lecture 2

This historically first calculus of variations problem has a non-smooth extremum!

24

Refraction of light; non-smooth solution

$$\underset{y(x)}{\operatorname{Min}} T = \int_{0}^{L} \left(\frac{\sqrt{1 + {y'}^{2}}}{v(y)} \right) dx$$

v(x) = speed of light ray changes at the interface between the two media.

We do not know for what x value, the bend takes place. This is given by variable end conditions. Let us see...

Intermediate variable end condition

$$\underset{y(x)}{\text{Min}} T = \int_{0}^{L} \left(\frac{\sqrt{1 + {y'}^2}}{v(y)} \right) dx \\
= \int_{0}^{x_c} \left(\frac{\sqrt{1 + {y'}^2}}{v_{\text{air}}} \right) dx + \int_{x_c}^{L} \left(\frac{\sqrt{1 + {y'}^2}}{v_{\text{glass}}} \right) dx$$

Now, for the two parts, x_c is a variable end condition!

Broken extremal conditions for a light ray

Structural Optimization: Size, Shape, and Topology

27

ME 260/G.K.Ananthasuresh, IISc

Snell's law from the corner condition

$$F - y'F_{y'} = \frac{1}{v\sqrt{1 + {y'}^2}} \text{ is continuous at the corner. So, ...}$$

$$\frac{1}{v_{air}\sqrt{1 + {y'}_{air}^2}} = \frac{1}{v_{glass}\sqrt{1 + {y'}_{glass}^2}}$$

$$\Rightarrow \frac{1}{v_{air}\sqrt{1 + \tan^2\theta_{air}}} = \frac{1}{v_{glass}\sqrt{1 + \tan^2\theta_{glass}}}$$

$$\Rightarrow \frac{\cos\theta_{air}}{v_{air}} = \frac{\cos\theta_{glass}}{v_{glass}} \Rightarrow \frac{\sin\phi_{air}}{v_{air}} = \frac{\sin\phi_{glass}}{v_{glass}}$$
Thus, we derived Snell's law using calculus of variations.

ME 260/G.K.Ananthasuresh, IISc

Structural Optimization: Size, Shape, and Topology

28

The end note

Variable end conditions

General variation

Variable end conditions for first and second derivatives cases Transversality conditions

Transversality conditions for the two-function case

Broken extremals Weierstrass-Erdmann corner conditions

