Lecture 19b

Size optimization of beams for stiffness and flexibility

ME 260 at the Indian Institute of Science, Bengaluru Structural Optimization: Size, Shape, and Topology
G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Banagalore suresh@iisc.ac.in

Outline of the lecture

Solving two problems concerning size optimization of beams for stiffness and flexibility with volume constraint.

What we will learn:
How to apply the eight steps we had used for bars to the case of beams.

Problem 1
$\operatorname{Min}_{A(x)} M C=\int_{0}^{L} q w d x$
Subject to
$\lambda(x): \quad\left(E I w^{\prime \prime}\right)^{\prime \prime}-q=0 \Rightarrow\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q=0$
I: $\quad \int_{0}^{L} A d x-V^{*} \leq 0$
Data: $L, \mathrm{q}(x), E, \alpha=t^{2} / 12, V^{*}$
We assume here that only $b(x)$ is variable.

$$
\begin{aligned}
& I(x)=\alpha A^{\beta} \\
& \alpha=\left(\frac{t^{2}}{12}\right) ; \beta=1
\end{aligned}
$$

Steps in the solution procedure

 Step 1: Write the LagrangianStep 2: Take variation of the Lagrangian w.r.t. the design variable and equate to zero to get the design equation.
Step 3: Take variation of the Lagrangian w.r.t. state variable(s) and equate to zero to get the adjoint equation(s).
Step 4: Collect all the equations, including the governing equation(s), complementarity condition(s), resource constraints, etc.
Step 5: Obtain the optimality criterion by substituting adjoint and equilibrium equations into the design equation, when it is possible.
Step 6: Identify all boundary conditions.
Step 7: Solve the equations analytically as much as possible.
Step 8: Use the optimality criteria method to solve the equations numerically.
G. K. Ananthasuresh, IISc Structural Optimization: Size, Shape, and Topology

Solution
$\operatorname{Min}_{A(x)} M C=\int_{0}^{L} q w d x$
Subject to
$\lambda(x): \quad\left(E I w^{\prime \prime}\right)^{\prime \prime}-q=0 \Rightarrow\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q=0$
Λ :

$$
\int_{0}^{L} A d x-V^{*} \leq 0
$$

Data: $L, \mathrm{q}(x), E, \alpha=t^{2} / 12, V^{*}$
Step $1 L=\int_{0}^{L}\left\{q w+\lambda\left(\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q\right)+\Lambda A\right\} d x-\Lambda V^{*}$

Expand the Lagrangian

Step $1 L=\int_{0}^{L}\left\{q w+\lambda\left(\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q\right)+\Lambda A\right\} d x-\Lambda V^{*}$

$$
L=\int_{0}^{L}\left\{q w+\lambda\left(\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q\right)+\Lambda A\right\} d x-\Lambda V^{*}
$$

$$
=\int_{0}^{L}\left\{q w+E \alpha \lambda\left(A^{\prime} w^{\prime \prime}+A w^{\prime \prime \prime}\right)^{\prime}-\lambda q+\Lambda A\right\} d x-\Lambda V^{*}
$$

$$
=\int_{0}^{L}\left\{q w+E \alpha \lambda A^{\prime \prime} w^{\prime \prime}+2 E \alpha \lambda A^{\prime} w^{\prime \prime \prime}+E \alpha \lambda A w^{\prime \prime \prime}-\lambda q+\Lambda A\right\} d x-\Lambda V^{*}
$$

Design equation

Step 2

$$
\begin{aligned}
& L=\int_{0}^{L}\left\{q w+E \alpha \lambda A^{\prime \prime} w^{\prime \prime}+2 E \alpha \lambda A^{\prime} w^{\prime \prime \prime}+E \alpha \lambda A w^{\prime \prime \prime}-\lambda q+\Lambda A\right\} d x-\Lambda V^{*} \\
& F=q w+E \alpha \lambda A^{\prime \prime} w^{\prime \prime}+2 E \alpha \lambda A^{\prime} w^{\prime \prime \prime}+E \alpha \lambda A w^{\prime \prime \prime \prime}-\lambda q+\Lambda A \\
& \delta_{A} L=0 \Rightarrow \frac{\partial F}{\partial A}-\left(\frac{\partial F}{\partial A^{\prime}}\right)^{\prime}+\left(\frac{\partial F}{\partial A^{\prime \prime}}\right)^{\prime \prime}=0 \\
& \Rightarrow \Lambda+E \alpha \lambda w^{\prime \prime \prime}-\left(2 E \alpha \lambda w^{\prime \prime \prime}\right)^{\prime}+\left(E \alpha \lambda w^{\prime \prime}\right)^{\prime \prime}=0 \\
& \Rightarrow \Lambda+E \alpha \lambda w^{\prime \prime \prime}-\left(2 E \alpha \lambda w^{\prime \prime \prime}\right)^{\prime}+\left(E \alpha \lambda^{\prime} w^{\prime \prime}\right)^{\prime}+\left(E \alpha \lambda w^{\prime \prime \prime}\right)^{\prime}=0 \\
& \Rightarrow \Lambda+E \alpha \lambda w^{\prime \prime \prime}-\left(E \alpha \lambda w^{\prime \prime \prime}\right)^{\prime}+\left(E \alpha \lambda^{\prime} w^{\prime \prime}\right)^{\prime}=0 \\
& \Rightarrow \Lambda+E \alpha \lambda w^{\prime \prime \prime}-\left(E \alpha \lambda^{\prime} w^{\prime \prime \prime}\right)^{\prime}-\left(E \alpha \lambda w^{\prime \prime \prime}\right)+\left(E \alpha \lambda^{\prime \prime} w^{\prime \prime}\right)+\left(E \alpha \lambda^{\prime} w^{\prime \prime \prime}\right)=0 \\
& \Rightarrow \Lambda+\left(E \alpha \lambda^{\prime \prime} w^{\prime \prime}\right)=0
\end{aligned}
$$

Adjoint equation

Step $3 F=q w+E \alpha \lambda A^{\prime \prime} w^{\prime \prime}+2 E \alpha \lambda A^{\prime} w^{\prime \prime \prime}+E \alpha \lambda A w^{\prime \prime \prime}-\lambda q+\Lambda A$

$$
\begin{aligned}
& \delta_{w} L=0 \Rightarrow \frac{\partial F}{\partial w}-\left(\frac{\partial F}{\partial w^{\prime}}\right)^{\prime}+\left(\frac{\partial F}{\partial w^{\prime \prime}}\right)^{\prime \prime}-\left(\frac{\partial F}{\partial w^{\prime \prime \prime}}\right)^{\prime \prime \prime}+\left(\frac{\partial F}{\partial w^{\prime \prime \prime}}\right)^{\prime \prime \prime}=0 \\
& \Rightarrow q-(0)^{\prime}+\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime \prime}-\left(2 E \alpha \lambda A^{\prime}\right)^{\prime \prime \prime}+(E \alpha \lambda A)^{\prime \prime \prime}=0 \\
& \Rightarrow q+\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime \prime}-\left(2 E \alpha \lambda A^{\prime}\right)^{\prime \prime \prime}+\left(E \alpha \lambda^{\prime} A\right)^{\prime \prime \prime}+\left(E \alpha \lambda A^{\prime \prime \prime \prime}=0\right. \\
& \Rightarrow q+\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime \prime}-\left(E \alpha \lambda A^{\prime}\right)^{\prime \prime \prime}+\left(E \alpha \lambda^{\prime} A\right)^{\prime \prime \prime}=0 \\
& \Rightarrow q+\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime \prime}-\left(E \alpha \lambda^{\prime} A^{\prime}\right)^{\prime \prime}-\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime \prime}+\left(E \alpha \lambda^{\prime \prime} A\right)^{\prime \prime}+\left(E \alpha \lambda^{\prime} A^{\prime}\right)^{\prime \prime}=0 \\
& \Rightarrow q+\left(E \alpha \lambda^{\prime \prime} A\right)^{\prime \prime}=0
\end{aligned}
$$

Collect all equations

Step 4
Unknowns $A(x), w(x), \lambda(x), \Lambda$
Three functions and one scalar variable.

We have three differential equations and one scalar equation.

Design equation
Adjoint equation

Governing equation

$$
\Lambda+\left(E \alpha \lambda^{\prime \prime} w^{\prime \prime}\right)=0
$$

$$
\left.\begin{array}{l}
\Lambda+\left(E \alpha \lambda^{\prime \prime} w^{\prime \prime}\right)=0 \\
q+\left(E \alpha \lambda^{\prime \prime} A\right)^{\prime \prime}=0 \\
\rangle \lambda=-w
\end{array}\right\}
$$

$$
\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q=0
$$

Strain energy density is uniform throughout the beam.

And, Λ cannot be zero.

So, the volume constraint is active.

Identify all boundary conditions

Step 6
Boundary conditions for $A(x)$

$$
\begin{aligned}
& F=q w+E \alpha \lambda A^{\prime \prime} w^{\prime \prime}+2 E \alpha \lambda A^{\prime} w^{\prime \prime \prime}+E \alpha \lambda A w^{\prime \prime \prime}-\lambda q+\Lambda A \\
& \left.\left.\left(F_{A^{\prime}}-\left(F_{A^{\prime \prime}}\right)^{\prime}\right) \delta A\right|_{0} ^{L}=0\right\}\left.\left\{2 E \alpha \lambda w^{\prime \prime \prime}-\left(E \alpha \lambda w^{\prime \prime}\right)^{\prime}\right\} \delta A\right|_{0} ^{L}=0 \\
& \text { and } \\
& \left.\Rightarrow\left\{E \alpha \lambda w^{\prime \prime \prime}-E \alpha \lambda^{\prime} w^{\prime \prime}\right\} \delta A\right|_{0} ^{L}=0 \\
& \left.F_{A^{\prime}} \delta A^{\prime}\right|_{0} ^{L}=0,\left.\quad \Rightarrow\left\{-E \alpha w w^{\prime \prime \prime}+E \alpha w^{\prime} w^{\prime \prime}\right\} \delta A\right|_{0} ^{L}=0 \quad \text { since } \lambda=-w \\
& \left.\left\{E \alpha \lambda w^{\prime \prime}\right\} \delta A^{\prime}\right|_{0} ^{L}=0 \\
& \left.\Rightarrow\left\{-E \alpha w w^{\prime \prime}\right\} \delta A^{\prime}\right|_{0} ^{L}=\left.0 \Rightarrow\left\{E \alpha w w^{\prime \prime}\right\} \delta A^{\prime}\right|_{0} ^{L}=0
\end{aligned}
$$

Identify all boundary conditions

Step 6 Boundary conditions for $\lambda(x)$

$$
\begin{aligned}
& F=q w+E \alpha \lambda A^{\prime \prime} w^{\prime \prime}+2 E \alpha \lambda A^{\prime} w^{\prime \prime \prime}+E \alpha \lambda A w^{\prime \prime \prime}-\lambda q+\Lambda A \\
& \left.\left(F_{w^{\prime}}-\left(F_{w^{\prime \prime}}\right)^{\prime}+\left(F_{w^{\prime \prime \prime}}\right)^{\prime \prime}-\left(F_{w^{\prime \prime \prime}}\right)^{\prime \prime \prime}\right) \delta w\right|_{0} ^{L}=0 \\
& \left.\left(F_{w^{\prime \prime}}-\left(F_{w^{\prime \prime \prime}}\right)^{\prime}+\left(F_{w^{\prime \prime \prime \prime}}\right)^{\prime \prime}\right) \delta w^{\prime}\right|_{0} ^{L}=0 \\
& \left.\left(F_{w^{\prime \prime \prime}}-\left(F_{w^{\prime \prime \prime}}\right)^{\prime}\right) \delta w^{\prime \prime}\right|_{0} ^{L}=0 \\
& \left.F_{w^{\prime \prime \prime}} \delta w^{\prime \prime \prime}\right|_{0} ^{L}=0
\end{aligned}
$$

Identify all boundary conditions

Step 6 Boundary conditions for $\lambda(x)$

$$
\begin{aligned}
& F=q w+E \alpha \lambda A^{\prime \prime} w^{\prime \prime}+2 E \alpha \lambda A^{\prime} w^{\prime \prime \prime}+E \alpha \lambda A w^{\prime \prime \prime}-\lambda q+\Lambda A \\
& \left.\left.\left.\left(F_{w^{\prime}}-\left(F_{w^{\prime \prime}}\right)^{\prime}+\left(F_{w w^{\prime \prime}}\right)^{\prime \prime}-\left(F_{w^{\prime \prime \prime}}\right)^{\prime \prime \prime}\right) \delta w\right|_{0} ^{L}=0\right\}-\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime}+\left(2 E \alpha \lambda A^{\prime}\right)^{\prime \prime}-(E \alpha \lambda A)^{\prime \prime \prime}\right\}\left.\delta w\right|_{0} ^{L}=0 \\
& \left.\left.\left(F_{w^{\prime \prime}}-\left(F_{w^{\prime \prime}}\right)^{\prime}+\left(F_{w^{\prime \prime \prime}}\right)^{\prime \prime}\right) \delta w^{\prime}\right|_{0} ^{L}=0\right\}\left.\left\{E \alpha \lambda A^{\prime \prime}-\left(2 E \alpha \lambda A^{\prime}\right)^{\prime}+(E \alpha \lambda A)^{\prime \prime}\right\} \delta w^{\prime}\right|_{0} ^{L}=0
\end{aligned}
$$

$$
\left.F_{w^{\prime \prime \prime}} \delta w^{\prime \prime \prime}\right|_{0} ^{L}=0
$$

$\left.(E \alpha \lambda A) \delta w^{\prime \prime \prime}\right|_{0} ^{L}=0$

Simplify $1^{\text {st }}$ adjoint boundary condition

 $\left.\left\{-\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime}+\left(2 E \alpha \lambda A^{\prime}\right)^{\prime \prime}-(E \alpha \lambda A)^{\prime \prime \prime}\right\} \delta w\right|_{0} ^{L}=0$$$
\left.\Rightarrow\left\{-\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime}+\left(2 E \alpha \lambda A^{\prime}\right)^{\prime \prime}-\left(E \alpha \lambda A^{\prime}\right)^{\prime \prime}-\left(E \alpha \lambda^{\prime} A\right)^{\prime \prime}\right\} \delta w\right|_{0} ^{L}=0
$$

$$
\left.\Rightarrow\left\{-\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime}+\left(E \alpha \lambda A^{\prime}\right)^{\prime \prime}-\left(E \alpha \lambda^{\prime} A\right)^{\prime \prime}\right\} \delta w\right|_{0} ^{L}=0
$$

$$
\left.\Rightarrow\left\{-\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime}+\left(E \alpha \lambda A^{\prime \prime}\right)^{\prime}+\left(E \alpha \lambda^{\prime} A^{\prime}\right)^{\prime}-\left(E \alpha \lambda^{\prime} A\right)^{\prime \prime}\right\} \delta w\right|_{0} ^{L}=0
$$

$$
\left.\Rightarrow\left\{\left(E \alpha \lambda^{\prime} A^{\prime}\right)^{\prime}-\left(E \alpha \lambda^{\prime} A\right)^{\prime \prime}\right\} \delta w\right|_{0} ^{L}=\left.0 \Rightarrow\left\{\left(E \alpha \lambda^{\prime} A^{\prime}\right)^{\prime}-\left(E \alpha \lambda^{\prime} A^{\prime}\right)^{\prime}-\left(E \alpha \lambda^{\prime \prime} A\right)^{\prime}\right\} \delta w\right|_{0} ^{L}=0
$$

$$
\left.\Rightarrow\left\{-\left(E \alpha \lambda^{\prime \prime} A\right)^{\prime}\right\} \delta w\right|_{0} ^{L}=\left.0 \Rightarrow\left(E \alpha \lambda^{\prime \prime} A^{\prime}+E \alpha \lambda^{\prime \prime \prime} A\right) \delta w\right|_{0} ^{L}=0
$$

Simplify $2^{\text {nd }}-4^{\text {th }}$ adjoint boundary conditions
$\left.\left\{E \alpha \lambda A^{\prime \prime}-\left(2 E \alpha \lambda A^{\prime}\right)^{\prime}+(E \alpha \lambda A)^{\prime \prime}\right\} \delta w^{\prime}\right|_{0} ^{L}=0$
$\left.\Rightarrow\left\{E \alpha \lambda A^{\prime \prime}-\left(2 E \alpha \lambda A^{\prime}\right)^{\prime}+\left(E \alpha \lambda A^{\prime}\right)^{\prime}+\left(E \alpha \lambda^{\prime} A\right)^{\prime}\right\} \delta w^{\prime}\right|_{0} ^{L}=0$
$\left.\Rightarrow\left\{E \alpha \lambda A^{\prime \prime}-\left(E \alpha \lambda A^{\prime}\right)^{\prime}+\left(E \alpha \lambda^{\prime} A\right)^{\prime}\right\} \delta w^{\prime}\right|_{0} ^{L}=0$
$\left.\Rightarrow\left\{-\left(E \alpha \lambda^{\prime} A^{\prime}\right)+\left(E \alpha \lambda^{\prime} A\right)^{\prime}\right\} \delta w^{\prime}\right|_{0} ^{L}=\left.0 \Rightarrow\left(E \alpha \lambda^{\prime \prime} A\right) \delta w^{\prime}\right|_{0} ^{L}=0$
$\left.\left\{2 E \alpha \lambda A^{\prime}-(E \alpha \lambda A)^{\prime}\right\} \delta w^{\prime \prime}\right|_{0} ^{L}=\left.0 \Rightarrow\left(E \alpha \lambda A^{\prime}-E \alpha \lambda^{\prime} A\right) \delta w^{\prime \prime}\right|_{0} ^{L}=0$
$\left.(E \alpha \lambda A) \delta w^{\prime \prime \prime}\right|_{0} ^{L}=0$

All four adjoint boundary conditions

$\delta w=\delta w^{\prime}=0$
Fixed

No BC for $\lambda(x)$
$\delta w=w^{\prime \prime}=0$
Pinned
$\left.\left(E \alpha \lambda^{\prime \prime} A^{\prime}+E \alpha \lambda^{\prime \prime \prime} A\right) \delta\right|_{0} ^{L}=0$
$\left.\left(E \alpha \lambda^{\prime \prime} A\right) \delta w^{\prime}\right|_{0} ^{L}=0$
$\left.\left(E \alpha \lambda A^{\prime}-E \alpha \lambda^{\prime} A\right) \delta w^{\prime \prime}\right|_{0} ^{L}=0$
$\lambda A^{\prime}-\lambda^{\prime} A=0$
No BC for $\lambda(x)$
$\left.(E \alpha \lambda A) \delta w^{\prime \prime \prime}\right|_{0} ^{L}=0$
$\lambda A=0$
$\lambda A=0$
No BC for $\lambda(x)$
$\lambda^{\prime \prime} A=0$
No BC for $\lambda(x)$

Notice that BCs of the state variable transfer to adjoint variable (most often). But be sure to keep the BCs on the design variable in mind.

All four adjoint boundary conditions

Transversely guided

$$
\delta w^{\prime}=w^{\prime \prime \prime}=0
$$

$\left.\left(E \alpha \lambda^{\prime \prime} A^{\prime}+E \alpha \lambda^{\prime \prime \prime} A\right) \delta w\right|_{0} ^{L}=0$

$$
\lambda^{\prime \prime} A^{\prime}+\lambda^{\prime \prime \prime} A=0
$$

$$
\lambda^{\prime \prime} A^{\prime}+\lambda^{\prime \prime \prime} A=0
$$

$\left.\left(E \alpha \lambda^{\prime \prime} A\right) \delta w^{\prime}\right|_{0} ^{L}=0$
No BC for $\lambda(x)$
$\lambda^{\prime \prime} A=0$
$\left.\left(E \alpha \lambda A^{\prime}-E \alpha \lambda^{\prime} A\right) \delta w^{\prime \prime}\right|_{0} ^{L}=0$
$\lambda A^{\prime}-\lambda^{\prime} A=0$
No BC for $\lambda(x)$
$\left.(E \alpha \lambda A) \delta w^{\prime \prime \prime}\right|_{0} ^{L}=0$
No BC for $\lambda(x)$

Notice that BCs of the state variable transfer to adjoint variable (most often). But be sure to keep the BCs on the design variable in mind.

Solving for a particular beam BCs

$\lambda A=0 \quad \& \quad \lambda A^{\prime}-\lambda^{\prime} A=0 \quad \lambda^{\prime \prime} A^{\prime}+\lambda^{\prime \prime \prime} A=0 \quad \& \lambda A^{\prime}-\lambda^{\prime} A=0$
Take $\lambda=\lambda^{\prime}=0$
Take $\lambda^{\prime \prime \prime}=\lambda^{\prime}=\underbrace{A^{\prime}=0}$
$\left.\left\{E \alpha w w^{\prime \prime}\right\} \delta A^{\prime}\right|_{0} ^{L}=\left.0 \quad \& \quad\left\{-E \alpha w w^{\prime \prime \prime}+E \alpha w^{\prime} w^{\prime \prime}\right\} \delta A\right|_{0} ^{L}=0$

Satisfied at $x=0$ and $x=\mathrm{L}$

Satisfied at $x=0$ and $x=\mathrm{L}$

$$
\left\{\begin{array}{l}
(\pm A \sqrt{E \alpha \Lambda})^{\prime \prime}=q_{0} \Rightarrow A= \pm \frac{q_{0} x^{2}}{2 \sqrt{E \alpha \Lambda}} \\
\text { Solve for } \Lambda \text { using } \int_{0}^{L} A d x-V^{*} \leq 0
\end{array}\right.
$$

Reconciliation of BCs for $A(x)$
 Step 7 From the previous slide, we have $A= \pm \frac{q_{0} x^{2}}{2 \sqrt{E \alpha \Lambda}}-\frac{q_{0} L}{\sqrt{E \alpha \Lambda}} x+C_{0}$

We can use the active volume constraint to solve for Λ
$\Rightarrow \pm \frac{q_{0} L^{3}}{6 \sqrt{E \alpha \Lambda}}-\frac{q_{0} L^{3}}{2 \sqrt{E \alpha \Lambda}}+C_{0} L=V^{*}$
$\Rightarrow \sqrt{E \alpha \Lambda}=-\frac{q_{0} L^{3}}{3\left(V^{*}-C_{0} L\right)}$ for + sign $\quad \& \quad \sqrt{E \alpha \Lambda}=-\frac{2 q_{0} L^{3}}{3\left(V^{*}-C_{0} L\right)}$ for - sign
$A(x)=\left\{\begin{array}{l}-\frac{3 x^{2}\left(V^{*}-C_{0} L\right)}{2 L^{3}}-\frac{3\left(V^{*}-C_{0} L\right)}{L^{2}} x+C_{0} \\ \frac{3 x^{2}\left(V^{*}-C_{0} L\right)}{4 L^{3}}-\frac{3\left(V^{*}-C_{0} L\right)}{2 L^{2}} x+C_{0}\end{array}\right.$

How do we choose the two possibilities (+ or -) and determine C_{0} ?

Validating with the numerical solution...

$A(x)=\left\{\begin{array}{l}A^{+}=-\frac{3 x^{2}\left(V^{*}-C_{0} L\right)}{2 L^{3}}-\frac{3\left(V^{*}-C_{0} L\right)}{L^{2}} x+C_{0} \\ A^{-}=\frac{3 x^{2}\left(V^{*}-C_{0} L\right)}{4 L^{3}}-\frac{3\left(V^{*}-C_{0} L\right)}{2 L^{2}} x+C_{0} \text {-curve }\end{array}\right.$
We need to see which part of the domain should have the "+ curve" and which part should have "curve".
$L=20 ; d=1 ; V^{*}=50 ; E=210 ; A_{\min }=1 E-3 ; A_{\max }=10 ; q_{0}=1$

We need to find \hat{x} and C_{0} using $A^{+}(\hat{x})=A^{-}(\hat{x})=0$

Problem 12
$\operatorname{Min}_{A(x)} V=\int_{0}^{L} A d x$
Subject to

Minimize the volume of material of a beam (statically determinate or indeterminate) for a deflection constraint in its span with an upper bound on the strain energy.
$\lambda(x): \quad\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q=0$
$\lambda_{d}(x): \quad\left(E \alpha A v^{\prime \prime}\right)^{\prime \prime}-q_{d}=0$
Λ : $\int_{0}^{L} E \alpha A w^{\prime \prime} v^{\prime \prime} d x-\Delta^{*}=0$
$\Gamma: \quad \int_{0}^{L} \frac{1}{2} E \alpha A w^{\prime \prime 2} d x-S E^{*}=0$
Data : $L, q(x), q_{d}(x), \alpha=t^{2} / 12, E, \Delta^{*}, S E^{*}$

The end note

We follow essentially the same eight steps

Identifying the optimality criterion is the highlight.

Boundary conditions for the adjoint variable need to be carefully done. See the correlation between BCs and optimal profiles

Analytical solution may be segmented with multiple possibilities because of + and - of constant strain.

Iterative numerical solution, when it is needed, remains the same.

