Lecture 19d

Size optimization of beams for strength

ME 260 at the Indian Institute of Science, Bengaluru Structural Optimization: Size, Shape, and Topology
G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Banagalore suresh@iisc.ac.in

Outline of the lecture

Posing and solving the topology optimization of 2D frames in which design variables are cross-section dimensions of beam elements.

Considering stiffness and flexibility together.
What we will learn:
How to apply the six steps to identify the optimality criterion and use it in the numerical method.

How to ensure that we get a realistic solution when non-intuitive displacement is desired for given applied force.

Problem S1
Minimize the volume of material of a beam subject to strength constraints.
$\operatorname{Min}_{A(x)} V=\int_{0}^{L} A d x$
Subject to
$\mu_{t}(x): \quad E\left(\frac{d}{2}\right) w^{\prime \prime}-S_{t} \leq 0$
$\mu_{c}(x): \quad S_{c}-E\left(\frac{d}{2}\right) w^{\prime \prime} \leq 0$
$\lambda(x): \quad\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q=0$
Data: $L, q(x), \alpha=t^{2} / 12, E, S_{t}, S_{c}$

Minimize the maximum stress subject to a volume constraint.
$\underset{A(x)}{\operatorname{Min}} \operatorname{Max}_{x} \sigma=E \frac{d}{2} w^{\prime \prime}$
Subject to
ム: $\quad \int_{0}^{L} A d x-V^{*} \leq 0$
$\lambda(x): \quad\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q=0$
Data: $L, q(x), \alpha=t^{2} / 12, E, V^{*}$

Do you see a problem here?
How do you take variation of a functional that is maximum of a function?

Maximum of a function over the spatial domain is indeed a functional. But how do you take the variation?

We use a trick here. See next...

Problem S2
Minimize the maximum stress subject to a volume constraint.

Two equivalent formulations

(The latter is the trick!)

$\operatorname{Min}_{A(x)} \operatorname{Max}_{x} \sigma=E \frac{d}{2} w^{\prime \prime}$
Subject to
人: $\quad \int_{0}^{L} A d x-V^{*} \leq 0$
$\lambda(x): \quad\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q=0$
Data: $L, q(x), \alpha=t^{2} / 12, E, V^{*}$
$\operatorname{Min}_{A(x), \beta} \beta$
Subject to

$$
\begin{aligned}
& \mu(x): E \frac{d}{2} w^{\prime \prime}-\beta \leq 0 \\
& \Lambda: \quad \int_{0}^{L} A d x-V^{*} \leq 0
\end{aligned}
$$

$\lambda(x): \quad\left(E \alpha A w^{\prime \prime}\right)^{\prime \prime}-q=0$
Data: $L, q(x), \alpha=t^{2} / 12, E, V^{*}$

The end note

 $\begin{array}{ll} & \text { Observe how we used the beta-formulation for handling mix-max } \\ \text { problems } \\ & \text { We follow six steps to solve the discretized (or finite-variable optimization) } \\ \text { problem. } \\ & \\ \text { Intentify the optimality criterion. } \\ \text { Iterative numerical solution, when it is needed, remains } \\ \text { the same. }\end{array}$