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Outline of the lecture
Simple exercises to go from the differential equation to the functional to 
be optimized.
A sufficient condition for the existence of a functional: self-adjointness
A method to verify self-adjointness
Two methods to find a functional for dissipative systems: (i) parallel 
generative system and (ii) multiplicative “generative” function
What we will learn:
How to obtain the functional for a self-adjoint differential operator
How to obtain a functional for some non-self-adjoint differential 
equations (when one exists)
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A simple differential equation
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There can be many solutions! Or, none! This is guesswork.
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Consider this:
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to       so that the Euler-Lagrange equation of the new functional 
remains the same as that of the original functional?       
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for 1,2,3,n = 

in general.This is also guesswork; 
not adequate.



ME260@IISc: Structural Optimization: Size, Shape, and TopologyG. K. Ananthasuresh, IISc

A sufficient condition for the existence of 
a functional: self-adjointness
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If the differential operator of a differential equation is self-adjoint, 
then there exists a functional, which, when minimized, will lead to 
the given differential equation as the Euler-Lagrange equation.

What is a differential operator?

What is self-adjointness?

0y ky′′ + =
An operator that acts on a 
function to give a differential 
equation.

( ) ( ) 0D k′′= + =

Differential operator

For two given functions, y(x) and z(x), D 
is said to be self-adjoint if…

, ,Dy z y Dz=

, =  inner product
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Is this differential operator self-adjoint?
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How does self-adjoint operation give us 
the functional?
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Self-adjointness is more than symmetry.
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We notice that self-adjointness implies symmetry. But does symmetry 
imply self-adjointness? Let us take an example.

Since it involves a complex number, symmetry necessitates taking 
the complex conjugate. Let us verify (see the next slide…).
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Check for symmetry and self-adjointness
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Not self-adjoint So, symmetry does not 
imply self-adjointness.
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Verifying self-adjointness and obtaining 
a functional.
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(Green’s theorem and boundary condition)
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(contd.)
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Obtaining a functional…
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This implies:

Self-adjointness is verified; so, there 
exists a functional.
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Self-adjointness is a sufficient condition; 
not a necessary condition.
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What does this mean?

It means that a functional that gives the given differential equation 
might exist even if the differential operator is not self-adjoint. This is 
because self-adjointness is not a necessary condition.

Let us take an example to be convinced about it.
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A differential operator of a dissipative 
system
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Consider this differential equation: 

Is this self-
adjoint?
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These two are not equal. Not self-adjoint.
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Minimized functional may exist even if 
the operator is not self-adjoint.
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( ) ( ) ( )D b k′′ ′= + +
We saw in the previous slide that 
this operator is not self-adjoint.
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If a minimizable
functional exists, 
we need to find a 
suitable 
multiplicative 
factor like bxe
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There is another way too…
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We saw in the previous slide that 
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Non-self-adjoint dissipative systems too 
can have functionals to be minimized.
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Multiplicative factor considered.

Parallel generative system appended.

We learned two methods for non-self-adjoint systems 
too. But we need to think creatively to find the 
multiplicative factor or a parallel generative system.
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The end note
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Method 2 for dissipative (non-self-adjoint) system, 
a parallel generative system 

Simple guess-work (does not work most of the time)

A systematic method (works only with self-adjoint operators)

What is self-adjointness? How to verify it?

Method 1 for dissipative (non-self-adjoint) system, a 
“compensatory” multiplicative factor
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