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Outline of the lecture
Introduction to shape and topological derivatives, and the limiting 
relationship between them.
Topological derivative method in isotropic linear elasticity.
Topological derivative-based topology optimization (a brief overview). 
What we will learn:
What is topological derivative and how it is related to shape sensitivity.
How to derive topological derivative for a given performance functional 
using asymptotic analysis.
Visualization of topological derivative-based optimization approach.
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Shape derivative

3

Shape derivative determines the sensitivity of the performance 
functional with respect to perturbation of the boundary of the domain.

Ω Ω𝜀𝜀 = Ω\𝐵𝐵𝜀𝜀
𝜀𝜀

Shrinks along the 
normal direction

�𝒙𝒙
�𝒙𝒙

𝐵𝐵𝜀𝜀

Unperturbed domain Perturbed domain

Let 𝜓𝜓(⋅) be the performance functional associated with the domains, then

𝑑𝑑𝑑𝑑(Ω𝜀𝜀)
𝑑𝑑𝑑𝑑

= lim
𝛿𝛿𝛿𝛿→0

𝜓𝜓 Ω𝜀𝜀+𝛿𝛿𝛿𝛿 − 𝜓𝜓(Ω𝜀𝜀)
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿 is the perturbation of the shape parameter, 𝜀𝜀.
Sokolowski, J. and Zolesio, J.P., Springer, 1992.
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Topological derivative

4

Topological derivative is obtained from the topological asymptotic 
expansion of the performance functional.
Topological derivative is the limiting value of the shape derivative.

𝜓𝜓(Ω𝜀𝜀) = 𝜓𝜓 Ω + 𝑓𝑓 𝜀𝜀 𝑇𝑇𝑇𝑇 �𝒙𝒙 + 𝑜𝑜(𝑓𝑓 𝜀𝜀 )Topological asymptotic expansion:

Novotny, A.A. and  Sokolowski, J., Springer, 2013.

𝑇𝑇𝑇𝑇 �𝒙𝒙 = lim
𝜀𝜀→0

𝜓𝜓(Ω𝜀𝜀) − 𝜓𝜓(Ω)
𝑓𝑓(𝜀𝜀)

𝑇𝑇𝑇𝑇 �𝒙𝒙 = lim
𝜀𝜀→0

1
𝑓𝑓′(𝜀𝜀)

𝑑𝑑𝑑𝑑(Ω𝜀𝜀)
𝑑𝑑𝑑𝑑

Differentiating 𝜓𝜓(Ω𝜀𝜀) with respect to 𝜀𝜀: 

Topological derivative:

Sokolowski, J. and Zochowski, A., 
SIAM Journal on Control and Optimization, 1999.

Here, 𝑓𝑓 𝜀𝜀 𝑇𝑇𝑇𝑇(�𝒙𝒙) is the first order term with two parts; (i) 𝑇𝑇𝑇𝑇(�𝒙𝒙) is the topological derivative; and 
(ii) 𝑓𝑓 𝜀𝜀 is the positive correction factor such that when 𝜀𝜀 → 0,𝑓𝑓 𝜀𝜀 = 0.

as   lim
𝜀𝜀→0

𝑜𝑜(𝑓𝑓(𝜀𝜀))
𝑓𝑓(𝜀𝜀)

= 0
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A simple example

5

Topological derivative is obtained from the first-order term in the 
topological asymptotic expansion of the performance functional.

Let us choose an unperturbed performance functional: 𝜓𝜓 Ω = �
Ω
𝜙𝜙(𝒙𝒙) 𝑑𝑑Ω

Performance functional associated with the perturbed domain: 𝜓𝜓 Ω𝜀𝜀 = �
Ω𝜀𝜀
𝜙𝜙(𝒙𝒙) 𝑑𝑑Ω𝜀𝜀

Topological asymptotic expansion:

𝜓𝜓 Ω𝜀𝜀 = �
Ω𝜀𝜀
𝜙𝜙(𝒙𝒙) 𝑑𝑑Ω𝜀𝜀 + �

B𝜀𝜀
𝜙𝜙(𝒙𝒙) 𝑑𝑑B𝜀𝜀 − �

B𝜀𝜀
𝜙𝜙(𝒙𝒙) 𝑑𝑑B𝜀𝜀

= �
Ω
𝜙𝜙(𝒙𝒙) 𝑑𝑑Ω −�

B𝜀𝜀
𝜙𝜙(𝒙𝒙) 𝑑𝑑B𝜀𝜀

= 𝜓𝜓 Ω −�
B𝜀𝜀
𝜙𝜙(𝒙𝒙) 𝑑𝑑B𝜀𝜀

𝜓𝜓 Ω𝜀𝜀 = 𝜓𝜓 Ω − 𝐵𝐵𝜀𝜀 𝜙𝜙 �𝒙𝒙 + 𝑜𝑜(𝐵𝐵𝜀𝜀)

𝐵𝐵𝜀𝜀 is the area 
measure of 𝐵𝐵𝜀𝜀

−𝜙𝜙 �𝒙𝒙 is the 
topological derivative
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Steps in the TD evaluation
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Step 1: Write the strong and weak forms of the governing equation and 
define the performance functional.
Step 2: Write the set of equations for the perturbed domain.
Step 3: Evaluate the shape derivative using adjoint analysis. The shape 
derivative turns out to be a surface integral on the inclusion. 
Step 4: Perform asymptotic analysis of the perturbed solution to evaluate 
the shape derivative in closed form.
Step 5: By using the limiting relationship between shape and topological 
derivatives, obtain closed-form topological derivative expression.
Step 6: Using the limiting values of the contrast parameter, evaluate 
topological derivatives for creating voids, and adding back material.
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TD in linear elasticity

7

Ω
𝛻𝛻 ⋅ 𝝈𝝈 𝒖𝒖 = 𝟎𝟎 𝑖𝑖𝑖𝑖 Ω

𝒖𝒖 = 𝟎𝟎 𝑜𝑜𝑜𝑜 Γ𝐷𝐷
𝝈𝝈 𝒖𝒖 𝒏𝒏 = 𝑭𝑭 𝑜𝑜𝑜𝑜 Γ𝑁𝑁
𝝈𝝈 𝒖𝒖 𝒏𝒏 = 𝟎𝟎 𝑜𝑜𝑜𝑜 Γ0

Constitutive relation:    𝝈𝝈 𝒖𝒖 = ℂ𝝐𝝐(𝒖𝒖)

Mean compliance as the performance functional:

Notation
𝒖𝒖:    unperturbed displacement
𝜼𝜼:    variation of 𝒖𝒖
𝒏𝒏:    normal vector
𝑭𝑭:    prescribed traction vector
𝝈𝝈:    Cauchy stress tensor
𝝐𝝐:     linear strain tensor
ℂ: fourth-order constitutive tensor
𝒰𝒰: solution space
𝒱𝒱: space of admissible variations

Strong form of the governing equation and boundary conditions:

Weak form of the governing equation and boundary conditions:

𝒖𝒖 ∈ 𝒰𝒰: �
Ω
𝝈𝝈 𝒖𝒖 ⋅ 𝝐𝝐 𝜼𝜼 = �

Γ𝑁𝑁
𝑭𝑭 ⋅ 𝜼𝜼 , 𝜼𝜼 ∈ 𝒱𝒱

Strain as symmetric gradient:    𝝐𝝐 𝒖𝒖 = ∇𝑠𝑠𝒖𝒖 = 1
2
∇𝒖𝒖 + ∇𝒖𝒖𝑇𝑇

𝜓𝜓 Ω = 𝜓𝜓Ω 𝒖𝒖 ∶= �
Γ𝑁𝑁
𝑭𝑭 ⋅ 𝒖𝒖
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Perturbed domain

8

Notation
𝒖𝒖𝜀𝜀:    perturbed displacement
𝜼𝜼𝜀𝜀:    variation of 𝒖𝒖𝜀𝜀
𝝈𝝈𝜀𝜀:    perturbed Cauchy stress tensor
𝛾𝛾: contrast parameter
𝒰𝒰𝜀𝜀:    space of perturbed solution
𝒱𝒱𝜀𝜀:     space of perturbed variation

Strong form:

𝛻𝛻 ⋅ 𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) = 𝟎𝟎 𝑖𝑖𝑖𝑖 Ω
𝒖𝒖𝜀𝜀 = 𝟎𝟎 𝑜𝑜𝑜𝑜 Γ𝐷𝐷

𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀)𝒏𝒏 = 𝑭𝑭 𝑜𝑜𝑜𝑜 Γ𝑁𝑁
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀)𝒏𝒏 = 𝟎𝟎 𝑜𝑜𝑜𝑜 Γ0
𝒖𝒖𝜀𝜀 = 𝟎𝟎 𝑜𝑜𝑜𝑜 𝜕𝜕B𝜀𝜀
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) 𝒏𝒏 = 𝟎𝟎 𝑜𝑜𝑜𝑜 𝜕𝜕B𝜀𝜀

Constitutive relation: 𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) = ℂ𝜀𝜀 𝒙𝒙 𝝐𝝐(𝒖𝒖𝜀𝜀)

Perturbed performance functional:

Transmission condition:   ⋅ = ⋅ 𝛀𝛀\𝑩𝑩𝜺𝜺 − ⋅ 𝑩𝑩𝜺𝜺

𝜓𝜓𝜀𝜀 Ω = �
Γ𝑁𝑁
𝑭𝑭 ⋅ 𝒖𝒖𝜀𝜀

Weak form 𝒖𝒖𝜀𝜀 ∈ 𝒰𝒰𝜀𝜀: �
Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ 𝝐𝝐(𝜼𝜼𝜀𝜀) = �

Γ𝑁𝑁
𝑭𝑭 ⋅ 𝜼𝜼𝜀𝜀 , 𝜼𝜼𝜀𝜀∈ 𝒱𝒱𝜀𝜀

ℂ𝜀𝜀 𝒙𝒙 = �ℂ 𝑖𝑖𝑖𝑖 𝒙𝒙 ∈ Ω \𝐵𝐵𝜀𝜀
𝛾𝛾ℂ 𝑖𝑖𝑖𝑖 𝒙𝒙 ∈ 𝐵𝐵𝜀𝜀

Ω = Ω \𝐵𝐵𝜀𝜀 ∪ 𝐵𝐵𝜀𝜀 𝜀𝜀�𝒙𝒙 𝐵𝐵𝜀𝜀
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Adjoint analysis

9

We use adjoint method, where we add the adjoint weak form to the functional

𝜓𝜓𝜀𝜀 Ω = �
Γ𝑁𝑁
𝑭𝑭 ⋅ 𝒖𝒖𝜀𝜀 + �

Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ 𝝐𝝐 𝝀𝝀𝜀𝜀 − �

Γ𝑁𝑁
𝑭𝑭 ⋅ 𝝀𝝀𝜀𝜀

𝑊𝑊1 𝑊𝑊2

Here, 𝝀𝝀𝜀𝜀 is the adjoint displacement. Next, we evaluate the sensitivity of 𝑊𝑊1 and 𝑊𝑊2, 
individually, and further add to determine the sensitivity of the functional 𝜓𝜓𝜀𝜀 Ω . Here, we 
use Reynolds transport theorem that states:

𝑑𝑑
𝑑𝑑𝑑𝑑
�
Ω
𝜙𝜙 = �

Ω
𝜙𝜙′ + �

𝜕𝜕Ω
𝜙𝜙 𝒗𝒗 ⋅ 𝒏𝒏

= �
Ω

(𝜙̇𝜙 − ∇𝜙𝜙 ⋅ 𝒗𝒗) + �
𝜕𝜕(Ω\𝐵𝐵𝜀𝜀)

𝜙𝜙 𝒗𝒗 ⋅ 𝒏𝒏 + �
𝜕𝜕𝐵𝐵𝜀𝜀

𝜙𝜙 𝒗𝒗 ⋅ 𝒏𝒏

Spatial derivative: 𝜙𝜙′ = �𝑑𝑑𝑑𝑑
𝑑𝑑𝒙𝒙

Material derivative: 𝜙̇𝜙 = �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Relation: 𝜙𝜙′ = 𝜙̇𝜙 − ∇𝜙𝜙 ⋅ 𝒗𝒗
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Shape sensitivities of 𝑊𝑊1 and 𝑊𝑊2
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𝑊𝑊1 = �
Γ𝑁𝑁
𝑭𝑭 ⋅ 𝒖𝒖𝜀𝜀

In this slide, we evaluate the shape sensitivities of 𝑊𝑊1 and 𝑊𝑊2

𝑊𝑊2 = �
Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ 𝝐𝝐 𝝀𝝀𝜀𝜀 − �

Γ𝑁𝑁
𝑭𝑭 ⋅ 𝝀𝝀𝜀𝜀

𝑑𝑑𝑊𝑊1

𝑑𝑑𝑑𝑑
= �

Γ𝑁𝑁
𝑭𝑭 ⋅ 𝒖̇𝒖𝜀𝜀

The boundary 
term does not 
contribute as the 
velocity at the 
external boundary 
Γ𝑁𝑁 is 𝟎𝟎.

𝑑𝑑𝑊𝑊2

𝑑𝑑𝑑𝑑
= �

Ω
𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀) ⋅ ∇𝑠𝑠𝒖𝒖𝜀𝜀′ + �

Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ ∇𝑠𝑠𝝀𝝀𝜀𝜀′ − �

Γ𝑁𝑁
𝑭𝑭 ⋅ 𝝀𝝀𝜀𝜀′ + �

𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ 𝝐𝝐 𝝀𝝀𝜀𝜀 𝒗𝒗 ⋅ 𝒏𝒏

Converting spatial derivatives to the material derivatives will get

−�
Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ ∇(∇𝝀𝝀𝜀𝜀𝒗𝒗) + �

𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ 𝝐𝝐 𝝀𝝀𝜀𝜀 𝒗𝒗 ⋅ 𝒏𝒏

By using Gauss divergence theorem to the terms in red, we obtain

𝑑𝑑𝑊𝑊2

𝑑𝑑𝑑𝑑
= �

Ω
𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀) ⋅ ∇𝑠𝑠𝒖̇𝒖𝜀𝜀 + �

Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ ∇𝑠𝑠𝝀̇𝝀𝜀𝜀 − �

Γ𝑁𝑁
𝑭𝑭 ⋅ 𝝀̇𝝀𝜀𝜀 − �

Ω
𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀) ⋅ ∇(∇𝒖𝒖𝜀𝜀𝒗𝒗)

𝑑𝑑𝑊𝑊2

𝑑𝑑𝑑𝑑
= �

Ω
𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀) ⋅ ∇𝑠𝑠𝒖̇𝒖𝜀𝜀 + �

Ω
(∇ ⋅ 𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀)) ⋅ (∇𝒖𝒖𝜀𝜀𝒗𝒗) −�

𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀)𝒏𝒏 ⋅ (∇𝒖𝒖𝜀𝜀𝒗𝒗)

−�
𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀)𝒏𝒏 ⋅ ∇𝝀𝝀𝜀𝜀𝒗𝒗 + �

𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ 𝝐𝝐 𝝀𝝀𝜀𝜀 𝒗𝒗 ⋅ 𝒏𝒏
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Shape derivative evaluation

11

𝑑𝑑𝜓𝜓𝜀𝜀
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑊𝑊1

𝑑𝑑𝑑𝑑
+
𝑑𝑑𝑊𝑊2

𝑑𝑑𝑑𝑑
𝑑𝑑𝜓𝜓𝜀𝜀
𝑑𝑑𝑑𝑑

= �
Γ𝑁𝑁
𝑭𝑭 ⋅ 𝒖̇𝒖𝜀𝜀 + �

Ω
𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀) ⋅ ∇𝑠𝑠𝒖̇𝒖𝜀𝜀 + �

Ω
(∇ ⋅ 𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀)) ⋅ (∇𝒖𝒖𝜀𝜀𝒗𝒗) −�

𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀)𝒏𝒏 ⋅ (∇𝒖𝒖𝜀𝜀𝒗𝒗)

−�
𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀)𝒏𝒏 ⋅ ∇𝝀𝝀𝜀𝜀𝒗𝒗 + �

𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ 𝝐𝝐 𝝀𝝀𝜀𝜀 𝒗𝒗 ⋅ 𝒏𝒏

Next, we isolate the terms involving 𝒖̇𝒖𝜀𝜀 and equate it to 0, to get the weak form for solving 
adjoint variable, i.e.,  

�
Ω
𝝈𝝈𝜀𝜀(𝝀𝝀𝜀𝜀) ⋅ ∇𝑠𝑠𝒖̇𝒖𝜀𝜀 = −�

Γ𝑁𝑁
𝑭𝑭 ⋅ 𝒖̇𝒖𝜀𝜀

Thus, it is observed that 𝝀𝝀𝜀𝜀 = −𝒖𝒖𝜀𝜀. Therefore, the shape derivative evaluates to
𝑑𝑑𝜓𝜓𝜀𝜀
𝑑𝑑𝑑𝑑

= 2�
𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀)𝒏𝒏 ⋅ (∇𝒖𝒖𝜀𝜀𝒗𝒗) −�

𝜕𝜕Ω
𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ 𝝐𝝐 𝒖𝒖𝜀𝜀 𝒗𝒗 ⋅ 𝒏𝒏

Also, we have 𝜕𝜕Ω = 𝜕𝜕 Ω\𝐵𝐵𝜀𝜀 ∪ 𝜕𝜕𝐵𝐵𝜀𝜀, 𝒗𝒗 = � 𝟎𝟎 𝑜𝑜𝑜𝑜 𝜕𝜕 Ω\𝐵𝐵𝜀𝜀
−𝒏𝒏 𝑜𝑜𝑜𝑜 𝜕𝜕𝐵𝐵𝜀𝜀

,

Hence, the shape derivative is given by: 𝑑𝑑𝜓𝜓𝜀𝜀
𝑑𝑑𝑑𝑑

= �
𝜕𝜕𝐵𝐵𝜀𝜀

𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) ⋅ 𝝐𝝐 𝒖𝒖𝜀𝜀

Shape derivative is an integral on the inclusion boundary.

and 𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀) 𝒏𝒏 = 𝟎𝟎 𝑜𝑜𝑜𝑜 𝜕𝜕𝐵𝐵𝜀𝜀 .
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𝒖𝒖𝜀𝜀 𝒙𝒙 = 𝒖𝒖 𝒙𝒙 + 𝒘𝒘𝜀𝜀 𝒙𝒙 + �𝒖𝒖𝜀𝜀(𝒙𝒙)

In order to solve the boundary integral in the shape derivative expression, asymptotic
expansion of the perturbed solution in the vicinity of the inclusion is analyzed. The ansätz is
proposed as:

Unperturbed 
solution

First-order 
boundary term

Remainder 
term

Applying the stress operator: 𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀 𝒙𝒙 ) = 𝝈𝝈𝜀𝜀(𝒖𝒖 𝒙𝒙 ) + 𝝈𝝈𝜀𝜀(𝒘𝒘𝜀𝜀 𝒙𝒙 ) + 𝝈𝝈𝜀𝜀(�𝒖𝒖𝜀𝜀 𝒙𝒙 )

�
𝛻𝛻 ⋅ 𝝈𝝈𝜀𝜀 𝒘𝒘𝜀𝜀(𝒙𝒙) = 𝟎𝟎 𝑖𝑖𝑖𝑖 ℝ2

𝒘𝒘𝜀𝜀(𝒙𝒙) → 𝟎𝟎 𝑎𝑎𝑎𝑎 𝒙𝒙 → ∞
𝝈𝝈𝜀𝜀 𝒘𝒘𝜀𝜀(𝒙𝒙) 𝒏𝒏 = − 1 − 𝛾𝛾 𝝈𝝈 𝒖𝒖 �𝒙𝒙 𝒏𝒏 𝑜𝑜𝑜𝑜 𝜕𝜕𝜕𝜕𝜀𝜀

Using Taylor series expansion: 𝝈𝝈𝜀𝜀 𝒖𝒖𝜀𝜀 𝒙𝒙 = 𝝈𝝈𝜀𝜀 𝒖𝒖 �𝒙𝒙 + ∇𝝈𝝈𝜀𝜀 𝒖𝒖(𝒚𝒚 )(𝒙𝒙 − �𝒙𝒙) + 𝝈𝝈𝜀𝜀(𝒘𝒘𝜀𝜀 𝒙𝒙 ) + 𝝈𝝈𝜀𝜀(�𝒖𝒖𝜀𝜀 𝒙𝒙 )

Here, 𝒚𝒚 is the intermediate point between 𝒙𝒙 and �𝒙𝒙. Next, the asymptotic expansion is
substituted in the governing equation and boundary conditions of the perturbed domain to
obtain boundary value problem for solving 𝒘𝒘𝜀𝜀. On the boundary of the inclusion, we have

𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀(𝒙𝒙)) 𝒏𝒏 = 𝟎𝟎 ⇒ 𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀(𝒙𝒙))𝛀𝛀\𝑩𝑩𝜺𝜺 − 𝝈𝝈𝜀𝜀(𝒖𝒖𝜀𝜀(𝒙𝒙))𝑩𝑩𝜺𝜺 𝒏𝒏 = 𝟎𝟎 𝑜𝑜𝑜𝑜 𝜕𝜕𝜕𝜕𝜀𝜀
⇒ (1 − 𝛾𝛾)𝝈𝝈𝜀𝜀 𝒖𝒖 �𝒙𝒙 𝒏𝒏 − 𝜀𝜀(1 − 𝛾𝛾)(∇𝝈𝝈𝜀𝜀 𝒖𝒖(𝒚𝒚 )𝒏𝒏)𝒏𝒏 + 𝝈𝝈𝜀𝜀 𝒘𝒘𝜀𝜀 𝒙𝒙 𝒏𝒏 + 𝝈𝝈𝜀𝜀 �𝒖𝒖𝜀𝜀 𝒙𝒙 𝒏𝒏 = 𝟎𝟎

Thus, the boundary value problem for solving 𝒘𝒘𝜀𝜀 is: 
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For 𝑟𝑟 ≥ 𝜀𝜀
(outside the inclusion) 

For 0 > 𝑟𝑟 < 𝜀𝜀
(inside the inclusion) 

Eigenvalues:
Deviatoric stress:

Kozlov, V.A., Mazya, V.G. and Movchan, A.B. Clarendon Press Oxford, 1999.
Novotny, A.A. and  Sokolowski, J., Springer, 2013.
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Eshelby and Polarization tensors
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Eshelby’s theorem states that the stresses and strains are uniform inside the inclusion. The stress
tensor on the boundary of the inclusion is mapped to the stress tensor at the center of the
inclusion by the following uniform fourth-order linear transformation:

𝝈𝝈𝜀𝜀 𝒘𝒘𝜀𝜀 |𝐵𝐵𝜀𝜀 = 𝕋𝕋𝛾𝛾𝝈𝝈(𝒖𝒖 �𝒙𝒙 )

Here, 𝕋𝕋𝛾𝛾 is the fourth-order Eshelby tensor, which is given by

𝕋𝕋𝛾𝛾 =
𝛾𝛾(1 − 𝛾𝛾)

2(1 + 𝛾𝛾𝛼𝛼2)
2𝛼𝛼2𝕀𝕀 +

𝛼𝛼1 − 𝛼𝛼2
1 + 𝛾𝛾𝛼𝛼1

𝑰𝑰 ⊗ 𝑰𝑰 , where
𝛼𝛼1 =

1 + 𝜈𝜈
1 − 𝜈𝜈

𝛼𝛼2 =
3 − 𝜈𝜈
1 + 𝜈𝜈

.and

𝕀𝕀 is fourth-order identity tensor.
𝑰𝑰 is second-order identity tensor.

Eshelby, J.D., Royal Society, 1957.

ℙ𝛾𝛾 =
1 − 𝛾𝛾
2𝛾𝛾

𝛾𝛾𝛾𝛾 + 𝕋𝕋𝛾𝛾

Ammari, H. and Kang, H., Applied Mathematical Sciences, 2007.

The fourth-order tensor 𝕋𝕋𝛾𝛾 is presented in its closed form for isotropic constitutive behavior. It
maps the stress state inside the inclusion.

This fourth-order tensor 𝕋𝕋𝛾𝛾 contributes to the Polarization tensor ℙ𝛾𝛾 that comes from the
solution to the boundary value problem that solves 𝒘𝒘𝜀𝜀. The Polarization tensor represents the
state of the stress inside the domain due to the presence of the inclusion, and is given by:
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Topological derivative evaluation
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The fourth-order Polarization tensor plays a central role in the topological derivative
expression, and is expressed in the tensorial notation as:

The topological derivative is given by 𝑇𝑇𝑇𝑇 �𝒙𝒙 = ℙ𝛾𝛾𝝈𝝈(𝒖𝒖 �𝒙𝒙 ) ⋅ 𝝐𝝐(𝒖𝒖 �𝒙𝒙 )

ℙ𝛾𝛾 = 1−𝛾𝛾
2(1+𝛾𝛾𝛼𝛼2)

1 + 𝛼𝛼2 𝕀𝕀 + 1−𝛾𝛾
2 1+𝛾𝛾𝛼𝛼1

𝛼𝛼1 − 𝛼𝛼2 𝑰𝑰 ⊗ 𝑰𝑰
On further simplification, the closed-form expression of topological derivative is given by:

𝑇𝑇𝑇𝑇(�𝒙𝒙) =
1 − 𝛾𝛾

2(1 + 𝛾𝛾𝛼𝛼2)
1 + 𝛼𝛼2 𝝈𝝈 𝒖𝒖 �𝒙𝒙 ⋅ 𝝐𝝐 𝒖𝒖 �𝒙𝒙 +

1 − 𝛾𝛾
2 1 + 𝛾𝛾𝛼𝛼1

𝛼𝛼1 − 𝛼𝛼2 𝑡𝑡𝑡𝑡 𝝈𝝈 𝒖𝒖 �𝒙𝒙 𝑡𝑡𝑡𝑡 𝝐𝝐 𝒖𝒖 �𝒙𝒙

Polarization tensor is operated over the stress tensor in the topological 
derivative expression. 
The two limiting values of the contrast parameter provide topological 
derivative for interchanging material.

Giusti, S.M., Novotny, A.A. and Padra, C., Engineering Analysis with Boundary Elements Press Oxford, 2008.

On substituting 𝛾𝛾 → 0, voids are 
created in the material region. 

On substituting 𝛾𝛾 → ∞, material 
is added back in the void region. 

𝑇𝑇𝑇𝑇𝐼𝐼→𝑉𝑉 �𝒙𝒙 =
2

1 + 𝜈𝜈
𝝈𝝈 �𝒙𝒙 ⋅ 𝝐𝝐 �𝒙𝒙 −

1 − 3𝜈𝜈
2 1 − 𝜈𝜈2

𝑡𝑡𝑡𝑡 𝝈𝝈 �𝒙𝒙 𝑡𝑡𝑡𝑡 𝝐𝝐 �𝒙𝒙

𝑇𝑇𝑇𝑇𝑉𝑉→𝐼𝐼 �𝒙𝒙 = −
2

3 − 𝜈𝜈
𝝈𝝈 �𝒙𝒙 ⋅ 𝝐𝝐 �𝒙𝒙 −

1 − 3𝜈𝜈
2 1 + 𝜈𝜈 (3 − 𝜈𝜈)

𝑡𝑡𝑡𝑡 𝝈𝝈 �𝒙𝒙 𝑡𝑡𝑡𝑡 𝝐𝝐 �𝒙𝒙




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1 Initial design with volume 
fraction of material 𝑣𝑣 = 1.

Displacements using Finite 
Element Analysis.2

We analytically derive topological 
derivative and plot the field.

Level-set plane moves in the 
topological sensitivity field, such 

that the volume constraint is 
satisfied.

3

4 Pareto front showing stiffness 
at all the volume fractions.

Topology optimization  

- Material - Void
5

6
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The end note
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Exploit the limiting relationship to obtain topological derivative.

Obtain the closed-form expression of topological derivative by interpreting 
topological asymptotic expansion.

The concept of topological and shape derivatives. The relationship between 
topological sensitivity with the classical shape optimization.

Adjoint analysis to evaluate shape derivative. The final expression of shape 
derivative turns out to be a surface integral on the boundary of the inclusion. 

Analyze the asymptotes of the perturbed solution to obtain the shape 
derivative in its closed-form.  

or
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