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Material derivative of the determinant of the Jacobian 
When we denote the coordinates of a point in the original (material) domain as 

{ }X,Y, Z T=X  and the corresponding point in the changed current (spatial) domain as 

{ }( , ) , , Tp x y z=x X  (where p  is a parameter that changes the domain), the Jacobian J  of 
transformation between the two domains is given as in 

 

x x x
X Y Zdx dX dX

y y ydy dY dY d dX Y Z
dz dZ dZz z z

X Y Z

∂ ∂ ∂ 
∂ ∂ ∂      

      ∂ ∂ ∂= = ⇒ =      ∂ ∂ ∂
           ∂ ∂ ∂ ∂ ∂ ∂ 

J x J X  (1) 

We will now compute the material derivative of J  w.r.t. p , i.e., ( )( )d
dp

=J J X


 . Note that 

we put an over-dot when we want to indicate that we are taking the material derivative. 

On the other hand, we use a prime to mean the spatial derivative. That is, ( )( )d
dp
′J J x .  

1D case 

 x xdx dX J
X X
∂ ∂

= ⇒ =
∂ ∂

 (2) 

Now, by noting that spatial and parameter derivatives commute, we write 

 d x dx
dp X X dp

 ∂ ∂  =   ∂ ∂   
 (3) 

By using the chain rule in view of ( , )x X p , we have 

 dx dx x
X dp x dp X
   ∂ ∂ ∂

=   ∂ ∂ ∂   
 (4) 

By denoting the velocity of the domain as x
dxV
dp

= , we write 

 xVd x dx x x
dp X x dp X x X

  ∂∂ ∂ ∂ ∂  = =  ∂ ∂ ∂ ∂ ∂   
 (5a) 

 x xV Vd x J J
dp X x x

∂ ∂∂ ⇒ = = ∂ ∂ ∂ 
 (5b) 

2D case 
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x x

dx dX dXX Y d d
y ydy dY dY

X Y

∂ ∂ 
     ∂ ∂ = = ⇒ =      ∂ ∂      ∂ ∂ 

J x J X  (6) 

Now, by expanding the determinant, we write 

 
x x

d d x y y xX Y
y ydp dp X Y X Y

X Y

 ∂ ∂ 
∂ ∂ ∂ ∂∂ ∂    = −  ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂ 

 (7) 

By taking the derivative using the product rule, we have 

 ( )d d x y d y x d y x d x y
dp dp X Y dp Y X dp X Y dp Y X

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       = + − −       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
J  (8)  

As we did in Eqs. (3-5) of the 1D case, for the 2D case (where each quantity is a function 
of x and y ) we write: 

 x x xV V Vd x dx x y
dp X X dp X x X y X

  ∂ ∂ ∂∂ ∂ ∂ ∂  = = = +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (9a) 

 y y yV V Vd y dy x y
dp Y Y dp Y x Y y Y

∂ ∂ ∂ ∂ ∂ ∂ ∂  = = = +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (9b) 

 y y yV V Vd y dy x y
dp X X dp X x X y X

∂ ∂ ∂ ∂ ∂ ∂ ∂  = = = +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (9c) 

 x x xV V Vd x dx x y
dp Y Y dp Y x Y y Y

  ∂ ∂ ∂∂ ∂ ∂ ∂  = = = +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (9d) 

By substituting the expansions in Eqs. 9(a-d) into Eq. (8), we get 

 

( ) y yx x

y x

x x

y x

V VV Vd x y y x y x
dp x X y X Y x Y y Y X

V V V Vx y x x y y
x X y X Y x Y y Y X

V Vx y
x

y
XY yX
y

Y

∂ ∂  ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
= + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂   ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
− + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∂ ∂ ∂
= +

∂ ∂
∂

∂ ∂∂
∂ ∂

∂

J

yV x x
x Y X

 
+  

 

∂ ∂ ∂
∂ ∂ ∂

y

y

V y x
y Y

V x x
x X Y

X
 

∂ ∂ ∂
∂

∂ ∂ ∂
+

∂

  ∂ ∂ ∂

−
∂



y x xV Vy x x y
y X Y x Y X

V y y
y Y X

 ∂ ∂∂ ∂ ∂ ∂
+ − +  ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂∂ ∂

 
  
 

 (10) 
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( )

( ) ( )

yx VVd x y y x
dp X Y X Y x y

d
dp

∂ ∂∂ ∂ ∂ ∂ ⇒ = − +  ∂ ∂ ∂ ∂ ∂ ∂  

⇒ = = ∇⋅

J

J J J V




 (11)  

3D case 

As it becomes tedious to write the long expressions, we use the summation notation while 
following Eqs. (7-11). 

We begin with writing the determinant of the Jacobian in a convenient indicial notation. 

 1 2 3ijk i j k

x x x
X Y Z

y y y J J JX Y Z
z z z

X Y Z

∂ ∂ ∂ 
∂ ∂ ∂ 

 ∂ ∂ ∂= =∈ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 

J  (12) 

where 
1 if  are in 123 permutation order
0 if any two or all of  are the same
1 if  are in 321 permutation order

ijk

ijk
ijk

ijk


∈ = 
−

 

How do we reconcile with Eq. (12)? The answer is by direct calculation. 

First, let us note that ijk∈  is 1 for 123, 231, 312 and it is (-1) for 321, 213, 321. For all others, 
it is zero. Therefore, we have 

( )1 2 3 11 22 33 12 23 31 13 21 32 13 22 31 12 21 33 11 23 32ijk i j kJ J J J J J J J J J J J J J J J J J J J J

x y z x y z x y z x y z x y z x y z
X Y Z Y Z X Z X Y Z Y X Y X Z X Z Y
x y z y z x y z y z
X Y Z Z Y Y Z X X

∈ = + + − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

x y z y z
Z Z X Y Y X

x y z y z x y z y z x y z y z
X Y Z Z Y Y X Z Z X Z X Y Y X

∂ ∂ ∂ ∂ ∂   + −   ∂ ∂ ∂ ∂ ∂   
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     = − − − + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

The last line is nothing but the determinant of 

x x x
X Y Z

y y y
X Y Z

z z z
X Y Z

∂ ∂ ∂ 
∂ ∂ ∂ 

 ∂ ∂ ∂=  ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 

J . 

 

Now, we write the material derivative of the determinant of the Jacobian as 
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 1 2 3 1 2 3 1 2 3ijk i j k i j k i j kJ J J J J J J J J =∈ + + 
 

J


  

  (13) 

Let us consider 1iJ


 first.  

 1 1 1
1

i
i

i i

dJ x dxdJ
dp dp X X dp

   ∂ ∂
= = =   ∂ ∂   



 (14) 

where the last step is due to the commutative property of spatial and parameter 

sensitivities. By denoting 1
1

dxV
dp

 
=  
 

 and noting that it depends on{ }, , Tx y z , which in turn 

depends on iX  , we re-expand the last term of Eq. (14) as follows. 

 1 1
1 1,

l
i l li

i l i

xV VJ V J
X x X

  ∂∂ ∂
= = = ∂ ∂ ∂ 



 (15) 

Note that 1
1 x

dx dxV V
dp dp

 
= = = 

 
 because the subscripts 1, 2, and 3 or x , y , and z  re 

interchangeably used depending upon the convenience of writing this down.  You have 
to have our wits about you when you work with indicial notation. 

 

Now, by using Eq. (15), we expand the first term of Eq. (13) as 

 1 2 3 1, 2 3

1,1 1 2 3 1,2 2 2 3 1,3 3 2 3

ijk i j k ijk l li j k

ijk i j k ijk i j k ijk i j k

J J J V J J J

V J J J V J J J V J J J

 ∈ =∈ 
 

=∈ +∈ +∈



 (15a) 

By virtue of the compact representation of the determinant of a matrix given in Eq. (12), 
the first term in the preceding equation can be recognized as 1,1VJ . Since the J -indices 
in the second and third terms are repeated, we can recognize them as determinants of 
matrices that have identical rows, and hence they are zero. Therefore, we can re-write Eq. 
(13) as 

 ( ) ( )1 2 3 1 2 3 1 2 3 1,1 2,2 3,36
ijk

i j k i j k i j kJ J J J J J J J J V V V
∈  = + + = + + = ∇ ⋅ 

  xJ J J V


  

  (16) 

Material derivative of the Jacobian and its other forms 

Sometimes we may need to take the material derivative of the Jacobian or its transpose, 
inverse, inverse of the transpose, or the transpose of the inverse. The indicial notation 
makes it easy to obtain them. 



5 
 

  G. K. Ananthasuresh, ME 260 
 

 ?d
dp

= =
JJ




 

Consider: 

 ,
ij i i i

ij i j
j j j

dJ x dx VdJ V
dp dp X X dp X

   ∂ ∂∂
= = = = =    ∂ ∂ ∂  



 (17a) 

 

1311 12 1 1 1

2321 22 2 2 2

3 3 331 32 33

dJdJ dJ V V V
dp dp dp X Y Z

dJdJ dJ V V V
dp dp dp X Y Y

V V VdJ dJ dJ
X Y Zdp dp dp

  ∂ ∂ ∂ 
   ∂ ∂ ∂   
  ∂ ∂ ∂ ⇒ = = = ∇   ∂ ∂ ∂   ∂ ∂ ∂   
   ∂ ∂ ∂  

XJ V


 (17b) 

Since j,iijJ V=


, we have  

 ( )T T T= ∇ = ∇X XJ V V


 (18) 

For 1−J


 , consider the identity; 

 1− =JJ I  (19) 

By taking the material derivative of the preceding equation, we get 

 

( )

1 1

1 1 1 1 1

− −

− − − − −

+ =

⇒ = − = − ∇X

J J J J 0

J J J J J V J













 (20) 

Furthermore, it may be recognized or verified by direct calculation that  

 ( ) ( ) 11 TT T −− −= =J J J  (21) 

Thus, 

 ( ) ( ) ( )11 T T T T T−− − −= = − ∇XJ J J V J
 

 

 (22) 

With what we have so far, we are set to take the material derivative of domain integrals. 
Before that, let us apply the formulae we have derived to an example that is amenable for 
verification by analytical calculation. 

Example 
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Let 
( )

2

(1 )
(1 )
1 2

x X p
y Y p
z Z p

= + 
 = + 
 = + 

 . Find J


, 1−J


 ,  and J


 .  

Solution 

We have 2

(1 ) 0 0
0 (1 ) 0
0 0 (1 2 )

p
p

p

+ 
 = + 
 + 

J and 2(1 )(1 )(1 2 )p p p= + + +J . 

1 0 0
0 2 0
0 0 2

p
 
 =  
  

J


, which is the same as 
1 0 0
0 2 0
0 0 2

p
 
 ∇ =  
  

XV because 2
2

dx
dp X

dy Ypdp
Zdz

dp

 
   
   = =   
   

  
 

V .  

( )

2

1
22 2

2

1 10 0 0 0
1 (1 )

1 20 0 0 0
1 1

1 20 0 0 01 2 (1 2 )

p p
d p
dp p p

p p

−

    −   + +      = = −   + +        − +  + 

J


 . 

Let us see what Eq. (20) gives: 

( )
( )

2

1 1 1 1 1
22

2

1 0 0
(1 )1 0 0

20 2 0 0 0
10 0 2

20 0
(1 2 )

X

p
pp
p

p

− − − − −

 
 −
 +

   
   = − ∇ = − = −   +    

 
− + 

J J V J J J


 , 

which is the same result we got directly. 

Next, let us take the derivative of the determinant by direct calculation. 

{ }2 2 2(1 )(1 )(1 2 ) (1 )(1 2 ) (1 )(2 )(1 2 ) 2(1 p)(1 p )d p p p p p p p p
dp

+ + + = + + + + + + + + . 

Now, according to Eq. (16), ( ) 2 31 2(1 )(1 )(1 2 ) dVdV dVp p p
dx dy dz

 
= ∇ ⋅ = + + + + + 

 
xJ J V
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( ) ( )2 2 2
(1 )(1 )(1 2 )

d Yp d ZdXp p p
dx dy dz

 
= + + + + + 

 
 

2
2

2
2

2 2
2

2

2 2(1 )(1 )(1 2 )
1 1 1 2

1 2 2(1 )(1 )(1 2 )
1 1 1 2

(1 )(1 2 ) 2 (1 )(1 2 ) 2(1 )(1 )(1 )(1 )(1 2 )
(1 )(1 )(1

d x d py d zp p p
dx p dy p dz p

pp p p
p p p

p p p p p p pp p p
p p

      
= + + + + +      + + +      

      
= + + + + +      + + +      

+ + + + + + + +
= + + +

+ + +
2 2

2 )
(1 )(1 2 ) 2 (1 )(1 2 ) 2(1 )(1 )

p
p p p p p p p= + + + + + + + +

 

which is the same result obtained with direct calculation of the derivative. This example 
makes it clear that the derivative in ( )∇ ⋅x V  to be taken in Eq. (16) is with respect to the 
spatial coordinates and not material coordinates. On the other hand, in Eqs. (17b), (18) 
and (22), the derivative is with respect to the material coordinates and not the spatial 
coordinates. Watch out when you use these formulae. 

Formulae to take note and possibly to commit to memory 

( )= ∇ ⋅xJ J V


  

= ∇XJ V


 

T T= ∇XJ V


 

( )1 1 1
X

− − −= − ∇J J V J


  

( ) ( ) ( )11 T T T T T−− − −= = − ∇XJ J J V J
 

 

 

 

 


