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First Variation of a Functional

The derivative of a function being zero is a necessary condition for the
extremum of that function in ordinary calculus. Let us now consider the
equivalent of a derivative for functionals because it plays the same crucial
role in calculus of variations as does the derivative of the ordinary calculus
in minimization of functions. Let us begin with a simple but a very
important concept called a Gateaux variation.

Gateaux variation

The functional §J(f) is called the Gateaux variation of J at / when the
limit that is defined as follows, exists.
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where £ is any vector in a vector space (a

Let us look at the meaning of # and ¢ geometrically. Note that f,72 € F. Now,
since f is the unknown function to be found so as to minimize (or
maximize) a functional, we want to see what happens to the functional J(f)
when we perturb this function slightly. For this, we take another function
h and multiply it by a small number ¢. We add ¢h to f and look at the
value of J(f +¢h). That is, we look at the perturbed value of the functional
due to perturbation 4. Symbolically, this is the shaded area shown in Fig.
1 where the function f is indicated by a thick solid line, # by a thin solid
line, and f +¢h by a thick dashed line. Next, we think of the situation of ¢
tending to zero. As ¢ — 0, we consider the limit of the shaded area divided
by ¢. If this limit exists, such a limit is called the Gateaux variation of J(f)
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at f for an arbitrary but fixed vector 4. Note that, we denote it as 6J(f;h)
by including # in defining Gateaux variation.

Function

[ h §
N :

Domain D(X)

Figure 1. Pictorial depiction of variation ¢4 of a function f
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Although the most important developments in calculus of variations
happened in 17t and 18 centuries, this formalistic concept of variation was
put forth by a French mathematician Gateaux at the end of 19t century. So,
one can say that intuitive and creative thinking leads to new developments
and rigorous thinking makes them mathematically sound and completely
unambiguous. To reinforce our understanding of the Gateaux variation, let
us relate it to the concept of a directional derivative in multi-variable
calculus.

A directional derivative of the function f(x,x,,........ ,x,) denoted in a

compact form as V. f (%), in the direction of a unit vector # is given by
 fx+eh)-1(3)
lim :

e—0 E
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Here the “vector” is the usual notion of “mechanics vector” that you know
and not the extended notion of a “vector” in a vector space. We are using
the over-bar to indicate that the denoted quantity consists of several
elements in an array as in a column (or row) vector. You know how to take
the derivative of a function f(x) with respect to any of its variables, say

x,1<i<n. It is simply a partial derivative of f(x) with respect to x,. You
also know that this partial derivative indicates the rate of change of 1 (¥)
in the direction of x,. What if you want to know the rate of change of 1 (¥)
in some arbitrary direction denoted by 4 ? This is exactly what a directional
derivative gives. Indeed, V.f(¥)=V.f(X)-h=V.f(x) h . That is, the

component of the gradient in the direction of #.

Now, relate the concept of the directional derivative to Gateaux variation
because we want to know how the value of the functional changes in a
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“direction” of another element # in the vector space. Thus, the Gateaux
variation extends the concept of the directional derivative of finite multi-
variable calculus to infinite dimensional vector spaces, i.e., calculus of
functionals.

Gateaux differentiability

If Gateaux variation exists for all ne X then J is said to be Gateaux
differentiable.

Operationally useful definition of Gateaux variation

Gateaux variation can be thought of as the following ordinary derivative
evaluated at £ =0.
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5J(f;h)=digJ(f+gh)

This helps calculate the Gateaux variation easily by taking an ordinary
derivative instead of evaluating the limit as in the earlier formal definition.
Note that this definition follows from the earlier definition and the concept
of how an ordinary derivative is defined in ordinary calculus if we think of
the functional as a simple function of ¢.

Gateaux variation and the necessary condition for
minimization of a functional

Gateaux variation provides a necessary condition for a minimum of a
functional.
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Consider J(f)where J(f), feD,isan open subset of a normed vector

space F, and /" € D and any fixed vector #eF.
If /7 is a minimum, then

J(f +eh)=J(f7)=0
must hold for all sutficiently small ¢

Now,
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for £>0
J(f*+gh)—J(f*)

&

>0

and for £ <0
J(f +eh)=J(f)

&

<0

If we let € > 0,

limJ(f*+gh)—J(f*)>O
£—0 g B J(f*+gh)—J(x*>

&>0 .
. . >lim
J(f +gh)—J(f) £=>0 &
<0|> — g
(Gateaux variation
) ensures the existence of this limit

= 5J(x;h) =0

and lim
>0 E
£<0

This simple derivation proves that the Gateaux variation being zero is the
necessary condition for the minimum of a functional. Likewise we can
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show (by simply reversing the inequality signs in the above derivation) that
the same necessary condition applies to maximum of a functional.

Now, we can state this as a theorem since it is a very important result.

Theorem: necessary condition for a minimum of a functional

5J(f":h)=0 forallheF

Based on the foregoing, we note that Gateaux variation is very useful in the
minimization of a functional but the existence of Gateaux variation is a
weak requirement on a functional since this variation does not use a norm
in X. Without a norm, we cannot talk about continuity of a functional

because we cannot judge how close two functions are to each other. Thus,
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Gateaux variation is not directly related to the continuity of a functional.
For this purpose, another differential called Fréchet differential has been
put forth.

Fréchet differential

y J(f+h)—J(f)—dJ(f§h)_O

0 ] )

If the above condition holds and dJ(f;4) is a linear, continuous functional

of h, then J is said to be Fréchet differentiable at f with “increment” #.
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dJ(f;h) is called the Fréchet differential.

If J is differentiable at each f e D we say that J is Fréchet differentiable in
D.

Some properties of Fréchet differential

i) J(f+h)=J(f)+dJ(h)+E(f;h)|h| for any small non-zero he X has a

limit zero at the zero vector in F. That is,

limE(f;h) =0.

h—0

Based on this, sometimes the Fréchet differential is also defined as
follows.
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=0.

0 7]

ii) dJ(f;ah +ah,)=adl(f;h)+a,dJ(f;h,) must hold for any numbers
a,a,€ K and any h,h, €F.
This is simply the linearity requirement on the Fréchet differential.

iii) dJ(f;h)<c |h| forallheF, where c is a constant.

This is the continuity requirement on the Fréchet differential.

iv) dJ(f;h)= ( )|

Frechet
derivative
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This is to say that the Fréchet differential is a linear functional of |A|.

Note that it also introduces a new definition: Fréchet derivative, which
is simply the coefficient of ||4| in the Fréchet differential.

Relationship between Gateaux variation and Fréchet
differential

If a functional J is Fréchet differentiable at /' then the Gateaux variation
of J at f exists and is equal to the Fréchet differential. That is,

5J(f;h)=dJ(f;h) forall helF

Here is why:
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Due to the linearity property of dJ( f;4), we can write
dJ(f;gh) =8dJ(f;h)

By substituting the above result into property (i) of the Fréchet
differential noted earlier, we get

J(f+8h)—J(f)—5dJ(f;h)=E(f,gh)”h” |5| for any h e ¥

A slight rearrangement of terms yields

IS I) gy oy 6 emf

& &
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When limit ¢ —» 0 is taken, the above equation gives what we need to
prove:

limJ(f+gh)_J(f)=5J(f;h):dJ(f;h) because limE(f,gh)”h”H:O
£

&—0 E &—0

Note that the latter part of property (i) is once again used in the preceding
equation.

Operations using Gateaux variation

Consider a simple general functional of the form shown below.
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Here, y(x) is the unknown function using which the functional is defined.
It takes the role of f that we have used so far. We need to have our wits
about us to see which symbol is used in what way!

If we want to calculate the Gateaux variation of the above functional,
instead of using the formal definition that needs an evaluation of the limit
we should use the alternate operationally useful definition—taking the
ordinary derivative of J(y+&h) with respect to ¢ and evaluating at £ =0. In

fact, there is an easier route that is almost like a thumb-rule. Let us find that

by using the derivative approach for the above simple functional.
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J(v+eh)= [ F(x, p(x)+eh(x), ' (x)+ ek (x)) ds

X

Recalling that 6J(f;4)= diJ(f+gh) , We can write
&

&=0

digJ(ergh) 2%{£F(x, y+8h,y'+8h') dx}

- Tdig{F(x, yt+eh,y' + gh')} dx

Please note that the order of differentiation and integration have been
switched above. It is a legitimate operation. By using chain-rule of
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differentiation for the integrand of the above functional, we can further

_j[@F jdx.

What we have obtained above is a general result in that for any functional,

simplify it to obtain

t OF
5J(f;h):;£[8(y+8h)h+6(y +5h j

be it of the form J(x,y,y',y",y",---), we can write the variation as follows.

8J(f3h)= JF(X,y,y',y”,y”’,...)dx= _[ O OF pr  OF o OF i
% 5 8)/ ay' ay” ay’”

Note that in taking partial derivatives with respect to y and its derivatives
we treat them as independent. It is a thumb-rule that enables us to write
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the variation rather easily by inspection and using rules of partial
differentiation of ordinary calculus.

We have now laid the necessary mathematical foundation for deriving the
Euler-Lagrange equations that are the necessary conditions for the
extremum of a function. Note that the Gateaux variation still has an
arbitrary function 2. When we get rid of this, we get the Euler-Lagrange
equations. For that we need to talk about fundamental lemmas of calculus
of variations.

Variational Derivative

We have studied Gateaux variation and Fréchet differential and the
relationship between them. There is one more subtle variant of this, which
is called the variational derivative. It is useful in some applications and in
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proving some theorems. More importantly, it tells us an alternative way of
looking at the concept of variation based purely on the techniques of
ordinary calculus. In fact, it can be interpreted as the “partial derivative”
equivalent for calculus of variations. As the history goes, Euler had
apparently derived his eponymous necessary condition using this concept.
Let us begin with the notation. The variational derivative of a functional

Xr
J = J' F(x,y,y")dx is denoted as i—J and is given by
% Y

8 _p_dfor Q)
oy 7 dx\ 9
You may observe that it is nothing but the Euler-Lagrange expression that

should be zero. When J has a more general form, the expression for ?—J
y

will be the corresponding expression in the E-L equation that we equate to
zero. Let us see what rationale underlies this definition.
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Because we want to use only the techniques of ordinary calculus, let us
“discretize” y(x) and consider finitely many discrete points
x,(k=1,2,.....,N) within the interval (xo,x f). See Fig. 1. As can be seen in

this figure, by way of discretization, we are approximating the continuous
curve of y(x) by a polygon.

ORI
,,’/’;{/'Q

\
\
/
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Figure 1. Discretization of a continuous curve y(x) by a polygon. All
subdivisions on the x-axis are equal to Ax. A local perturbation at x, is
considered and its effect is shown with the dashed lines.

Now, the functional can be approximated as follows.

JrJy= ZF[xkoyka(ka )J(xlm —X;) = ZF(xkayka(ykﬂ yk)ij (2)
k=1 ( k+1 k) k=1 Ax
where in the last step we have assumed that all subdivisions along the x-

axis are equal to Ax. Our variables to minimize J, are now {y,,y,,--,yy}.

Consider the partial derivative of J, with respect to y,.

(yk+l _yk)
Ax

oJ (Ve = V) (y, y )
—6yN =F (%, 7,5 el -k JAX+F (XY, s =
k

)_ ( k’ k’ )
(3)
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Here, we have just used the chain rule of differentiation. As Ax — 0, the
RHS of Eq. (3) goes to zero. Now, divide the LHS and RHS of Eq. (3) by Ax
to get

(yk_yk_1)
F! x ’ 19 -

(;vk+1—yk))+ Ot Vi Ax )

Ax Ax

(Vea _yk))

Fy'(xkﬂykﬂ Ax

oJ
oy, Ax

=F,(x,,
(4)

When Ax — 0, dy,Ax, which can be interpreted as the shaded area in Fig. 1,

also tends to zero. In fact, we then denote dy,Ax as Ao, or, in general,

simply as &y evaluated at x =x,. Furthermore, as Ax—0, J, > J. We take
the limit of Eq. (4) as Ax — 0.
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oy _8J _, d(F')
y

lim = =
a-00y Ax Oy 7 dx
Notice how we defined the variational derivative in Eq. (5). We can think

of 27 as the limiting case of S+ =J ()
oy Ao

where £ is the perturbation

(i.e., variation) of y at some x and Ac is the extra area under y(x) due to
that perturbation. Therefore, we write

AJ=J<y+h)—J(y>={‘;—‘;

A +6}A(7 (6)

X=X

where ¢ is a small discretization error. When the discretization error is
insignificantly small, we can write
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A ~—| Ao (7)

Thus, the variational derivative helps us get the first order change in the
value of the functional for a local perturbation of y(x) at x=x. Think of
Taylor series of expansion of a function of many variables and try to relate
this concept of first order change in the value of the function.

1ISc 26 Ananthasures



