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First Variation of a Functional  
 

The derivative of a  function being zero  is a necessary  condition  for  the 
extremum of that function  in ordinary calculus. Let us now consider the 
equivalent of a derivative for functionals because it plays the same crucial 
role in calculus of variations as does the derivative of the ordinary calculus 
in  minimization  of  functions.  Let  us  begin  with  a  simple  but  a  very 
important concept called a Gateaux variation. 
 
Gateaux variation 
 
The  functional   J f  is  called  the Gateaux variation of  J  at  f  when  the 
limit that is defined as follows, exists. 
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            
0

(f; ) lim
J f h J f

J h







 
  where h  is any vector in a vector space (a 

function space for our purposes), . 
 
Let us look at the meaning of h  and   geometrically. Note that f,h . Now, 
since  f  is  the  unknown  function  to  be  found  so  as  to  minimize  (or 
maximize) a functional, we want to see what happens to the functional  ( )J f  
when we perturb this function slightly. For this, we take another function 
h  and multiply  it by a small number  . We add  h  to  f  and  look at  the 
value of  ( )J f h . That is, we look at the perturbed value of the functional 
due to perturbation  h . Symbolically, this is the shaded area shown in Fig. 
1 where the function  f  is indicated by a thick solid line, h  by a thin solid 
line, and  f h  by a thick dashed line. Next, we think of the situation of   
tending to zero. As  0  , we consider the limit of the shaded area divided 
by  . If this limit exists, such a limit is called the Gâteaux variation of  ( )J f  
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at  f  for an arbitrary but fixed vector h . Note that, we denote it as  ( ; )J f h  
by including h  in defining Gateaux variation. 
 

 
Figure 1. Pictorial depiction of variation  h  of a function  f  
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Although  the  most  important  developments  in  calculus  of  variations 
happened in 17th and 18th centuries, this formalistic concept of variation was 
put forth by a French mathematician Gateaux at the end of 19th century. So, 
one can say that intuitive and creative thinking leads to new developments 
and rigorous thinking makes them mathematically sound and completely 
unambiguous. To reinforce our understanding of the Gateaux variation, let 
us  relate  it  to  the  concept  of  a  directional  derivative  in multi‐variable 
calculus. 
 
A  directional  derivative  of  the  function   1 2, ,........., nf x x x  denoted  in  a 
compact form as   h f x , in the direction of a  unit vector h  is given by 

              
   

0
lim

f x h f x






 
. 
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Here the “vector” is the usual notion of “mechanics vector” that you know 
and not the extended notion of a “vector” in a vector space. We are using 
the  over‐bar  to  indicate  that  the  denoted  quantity  consists  of  several 
elements in an array as in a column (or row) vector. You know how to take 
the  derivative of a function   f x  with respect to any of its variables, say 

, 1ix i n  . It  is simply a partial derivative of   f x  with respect to  ix . You 
also know that this partial derivative indicates the rate of change of   f x  
in the direction of  ix . What if you want to know the rate of change of   f x  
in some arbitrary direction denoted by h ? This is exactly what a directional 
derivative  gives.  Indeed,       T

h h hf x f x h f x h      .  That  is,  the 
component of the gradient in the direction of h . 
 
Now, relate the concept of the directional derivative to Gateaux variation 
because we want  to know how  the value of  the  functional changes  in a 
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“direction” of another  element h  in  the vector  space. Thus,  the Gateaux 
variation extends the concept of the directional derivative of finite multi‐
variable  calculus  to  infinite  dimensional  vector  spaces,  i.e.,  calculus  of 
functionals. 
 
Gâteaux differentiability 
If  Gateaux  variation  exists  for  all  h X  then  J  is  said  to  be  Gateaux 
differentiable. 
 

Operationally useful definition of Gateaux variation 
Gateaux variation can be thought of as the following ordinary derivative 
evaluated at  0  . 
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                       
0

; dJ f h J f h
d 

 
 

   

 
This helps  calculate  the Gateaux variation  easily by  taking  an  ordinary 
derivative instead of evaluating the limit as in the earlier formal definition. 
Note that this definition follows from the earlier definition and the concept 
of how an ordinary derivative is defined in ordinary calculus if we think of 
the functional as a simple function of  . 
 
Gateaux  variation  and  the  necessary  condition  for 
minimization of a functional 
 
Gâteaux  variation  provides  a  necessary  condition  for  a minimum  of  a 
functional. 
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Consider    J f  where     ,     ,J f f D  is an open subset of a normed vector 
space , and  *f D  and any fixed vector h. 
 
If  *f  is a minimum, then   
 
        * * 0J f h J f    
 
must hold for all sufficiently small   
 
Now,  
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   

   

* *

* *

for  0

                0

and for 0

                0

J f h J f

J f h J f














 




 


  

   

   
   

* *

* *

* *

0
0

0

0
0

Gateaux variation
ensures the existence of this limit

If we let 0,

              0

  lim ( ; ) 0

and       0

lim

 lim

J f h J f

J f h J x
J x h

J f h J f













 
















 


 
 

  
 





 

 
This simple derivation proves that the Gateaux variation being zero is the 
necessary  condition  for  the minimum  of  a  functional. Likewise we  can 
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show (by simply reversing the inequality signs in the above derivation) that 
the same necessary condition applies to maximum of a functional.  
 
Now, we can state this as a theorem since it is a very important result. 

 
Theorem: necessary condition for a minimum of a functional  
  
              *; 0   for all J f h h    
 
Based on the foregoing, we note that Gateaux variation is very useful in the 
minimization of a  functional but  the  existence of Gateaux variation  is a 
weak requirement on a functional since this variation does not use a norm 
in  X . Without  a norm, we  cannot  talk  about  continuity  of  a  functional 
because we cannot judge how close two functions are to each other. Thus, 
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Gateaux variation is not directly related to the continuity of a functional. 
For this purpose, another differential called Fréchet differential has been 
put forth. 
 
 
Fréchet differential  
 

                          
0

;
0lim

h

J f h J f dJ f h
h

  
  

 
 
If the above condition holds and   f;dJ h  is a linear, continuous functional 
of h , then J  is said to be Fréchet differentiable at  f  with “increment” h .  
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 ;dJ f h  is called the Fréchet differential. 
 
If  J  is differentiable at each  f D  we say that J  is Fréchet differentiable in 
D. 
 
Some properties of Fréchet differential  
 
i)        f; ;J f h J f dJ h E f h h     for  any  small  non‐zero  h X  has  a 

limit zero at the zero vector in . That is, 
 
         lim ; 0

h
E f h


 . 

   
  Based  on  this,  sometimes  the  Fréchet  differential  is  also  defined  as 
follows. 
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         ;
0lim

h

J f h J f dJ f h
h

  
 .  

 
ii)       1 1 2 2 1 1 2 2; ; ( ; )dJ f a h a h a dJ f h a dJ f h    must  hold  for  any  numbers 

1 2,a a K     and any  1 2,h h  .       
  This is simply the linearity requirement on the Fréchet differential. 
 
iii)    ; c    for all dJ f h h h  , where c  is a constant.   
  This is the continuity requirement on the Fréchet differential. 
 
iv)      

Frechet 
derivative

;dJ f h J f h   
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This  is to say that the Fréchet differential  is a  linear functional of  h . 
Note that it also introduces a new definition: Fréchet derivative, which 
is simply the coefficient of  h  in the Fréchet differential. 

 
 
Relationship  between  Gateaux  variation  and  Fréchet 
differential  
 
If a functional J  is Fréchet differentiable at  f  then the Gateaux variation 
of  J  at  f   exists and is equal to the Fréchet differential. That is, 
 
     ; ;    for all   J f h dJ f h h    
 
Here is why: 
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Due to the linearity property of   ;dJ f h , we can write 
 
      ; ;dJ f h dJ f h   
 
By  substituting  the  above  result  into  property  (i)  of  the  Fréchet 
differential noted earlier, we get 
 
         ; , for any J f h J f dJ f h E f h h h         
 
A slight rearrangement of terms yields 
 

         ; ,
J f h J f

dJ f h E f h h
 


 

 
   
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When  limit  0   is  taken,  the  above  equation gives what we need  to 
prove: 
 

           
0 0

lim ; ;     because lim , 0
J f h J f

J f h dJ f h E f h h
 

 
 

  

 
    

 
Note that the latter part of property (i) is once again used in the preceding 
equation. 
 
Operations using Gateaux variation   
 
Consider a simple general functional of the form shown below. 
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      

 

2

1

,  ,   

where 

x

x

J y F x y x y x dx

dyy x
dx



 


 

 
Here,  ( )y x  is the unknown function using which the functional is defined. 
It takes the role of  f  that we have used so far. We need to have our wits 
about us to see which symbol is used in what way! 
 
If we want  to  calculate  the Gateaux  variation  of  the  above  functional, 
instead of using the formal definition that needs an evaluation of the limit 
we  should  use  the  alternate  operationally  useful  definition—taking  the 
ordinary derivative of   J y h  with respect to   and evaluating at  0  . In 
fact, there is an easier route that is almost like a thumb‐rule. Let us find that 
by using the derivative approach for the above simple functional. 
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          
2

1

,  + ,  
x

x

J y h F x y x h x y x h x dx       

 

Recalling that     
0

; dJ f h J f h
d 

 
 

  , we can write 

 

   

  

2

1

2

1

,  + ,  

                     ,  + ,  

x

x

x

x

d dJ f h F x y h y h dx
d d

d F x y h y h dx
d

  
 

 


      
  

  




 

 
Please  note  that  the  order  of  differentiation  and  integration  have  been 
switched  above.  It  is  a  legitimate  operation.  By  using  chain‐rule  of 



ME260: Lecture 11c                   Structural Optimization; Size, Shape, and Topology 

IISc                          19  Ananthasuresh 
 

differentiation  for  the  integrand of  the above  functional, we  can  further 
simplify it to obtain 
 

     
2 2

1 10

;
x x

x x

F F F FJ f h h h h h dx
y h y h y y




 



                      
  . 

 
What we have obtained above is a general result in that for any functional, 
be it of the form  ( , , , , , )J x y y y y   , we can write the variation as follows. 
 

 
2 2

1 1

; ( , , , , , )
x x

x x

F F F FJ f h F x y y y y dx h h h h dx
y y y y


                     

   . 

 
Note that in taking partial derivatives with respect to  y  and its derivatives 
we treat them as independent. It is a thumb‐rule that enables us to write 
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the  variation  rather  easily  by  inspection  and  using  rules  of  partial 
differentiation of ordinary calculus. 
 
We have now laid the necessary mathematical foundation for deriving the 
Euler‐Lagrange  equations  that  are  the  necessary  conditions  for  the 
extremum  of  a  function.  Note  that  the  Gateaux  variation  still  has  an 
arbitrary function h . When we get rid of this, we get the Euler‐Lagrange 
equations. For that we need to talk about fundamental lemmas of calculus 
of variations. 
 
Variational Derivative 
We  have  studied  Gateaux  variation  and  Fréchet  differential  and  the 
relationship between them. There is one more subtle variant of this, which 
is called the variational derivative. It is useful in some applications and in 
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proving some theorems. More importantly, it tells us an alternative way of 
looking  at  the  concept  of  variation  based  purely  on  the  techniques  of 
ordinary calculus. In fact, it can be interpreted as the “partial derivative” 
equivalent  for  calculus  of  variations.  As  the  history  goes,  Euler  had 
apparently derived his eponymous necessary condition using this concept.  
Let us begin with the notation. The variational derivative of a functional 

0

( , , )
fx

x

J F x y y dx   is denoted as  J
y



 and is given by 

y
J d FF
y dx y




 
    

  (1) 

You may observe that it is nothing but the Euler‐Lagrange expression that 
should be zero. When  J  has a more general  form,  the expression  for  J

y


 

will be the corresponding expression in the E‐L equation that we equate to 
zero. Let us see what rationale underlies this definition. 
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Because we want to use only the techniques of ordinary calculus, let us 

“discretize”  ( )y x  and  consider  finitely  many  discrete  points 
 1,2,.......,kx k N  within the interval  0 , fx x .  See Fig. 1. As can be seen in 

this figure, by way of discretization, we are approximating the continuous 
curve of  ( )y x  by a polygon.  
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Figure  1.  Discretization  of  a  continuous  curve  ( )y x  by  a  polygon.  All 
subdivisions on  the  x ‐axis are equal  to  x .   A  local perturbation at  kx  is 
considered and its effect is shown with the dashed lines. 
 
Now, the functional can be approximated as follows. 

  1 1
1

1 11

( ) ( ), , ( ) , ,
( )

N N
k k k k

N k k k k k k
k kk k

y y y yJ J F x y x x F x y x
x x x

 


 

             
    (2) 

where in the last step we have assumed that all subdivisions along the  x ‐
axis are equal  to  x . Our variables  to minimize  NJ  are now  1 2, , , Ny y y . 
Consider the partial derivative of   NJ  with respect to  ky . 
 

  JN

yk

 Fy (xk , yk ,
( yk1  yk )

x
)x  F y (xk1, yk1,

( yk  yk1)
x

) F y (xk , yk ,
( yk1  yk )

x
)   

                  (3)             
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Here, we have  just used  the chain  rule of differentiation. As  0x  ,  the 
RHS of Eq. (3) goes to zero. Now, divide the LHS and RHS of Eq. (3) by  x   
to get  
 

 
1 1

1 1
1

( ) ( )( , , ) ( , , )( )( , , )
k k k k

y k k y k k
N k k

y k k
k

y y y yF x y F x yJ y y x xF x y
y x x x

 
  



 
    

   
   

                (4) 
 
When  0x  ,  ky x  , which can be interpreted as the shaded area in Fig. 1, 
also  tends  to  zero.  In  fact, we  then  denote  ky x   as  k  or,  in  general, 
simply as  y  evaluated at  kx x . Furthermore, as   0x  ,  NJ J . We take 
the limit of Eq. (4) as  0x  . 
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   
0

lim N
y yx

k

J J dF F
y x y dx


 

 


  

 
  (5) 

Notice how we defined the variational derivative in Eq. (5). We can think 
of  J

y


 as the limiting case of      ( ) ( )J y h J y


 


   where h  is the perturbation 

(i.e., variation) of  y  at some  x


 and      is the extra area under  ( )y x  due to 
that perturbation. Therefore, we write 
 

  ( ) ( )
x x

JJ J y h J y
y

  
 



         
  

  (6) 

 
where   is  a  small discretization  error. When  the discretization  error  is 
insignificantly small, we can write 
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x x

JJ
y

 
 



     (7) 

 
Thus, the variational derivative helps us get the first order change in the 
value of  the  functional  for  a  local perturbation of  ( )y x  at  ˆx x . Think of 
Taylor series of expansion of a function of many variables and try to relate 
this concept of first order change in the value of the function. 
 


