Lecture 12
 Euler-Lagrange Equations and their Extension to Multiple Functions and Multiple Derivatives in the integrand of the Functional

ME 260, Indian Institute of Science
Structural Optimization: Size, Shape, and Topology
G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bengaluru suresh@iisc.ac.in

Outline of the lecture

Review of functional, vector spaces, Gateaux variation
Euler-Lagrange equations
Boundary conditions
Multiple functions
Multiple derivatives
What we will learn:
First variation + integration by parts + fundamental lemma $=$ Euler Lagrange equations
How to derive boundary conditions (essential and natural)
How to deal with multiple functions and multiple derivatives
Generality of Euler-Lagrange equations

Functional

A functional J is a mapping from a function space F to real number space R.

A vector space of functions
Real number space

A vector space

1. Closed under vector addition $x \oplus y \in X$ for all $x, y \in X$
2. Associative law for addition

$$
(x \oplus y) \oplus z=x \oplus(y \oplus z)
$$

5. Additive inverse
$x \oplus x^{\prime}=x^{\prime} \oplus x=\theta$
6. Multiplicative identity
$1 \odot x=x ; \quad$ and $(0 \odot x \in \theta)$

Vector addition \oplus Scalar multiplication \odot
2. Commutative law for addition

$$
x \oplus y=y \oplus x
$$

4. Additive identity

$x \oplus \theta=\theta \oplus x=x$ for all $x \in X$
6. Closed under scalar multiplication

For all $\alpha \in K$, and all $x \in X, \alpha \odot \mathrm{x} \in \mathrm{X}$
8. Associate law for scalar multiplication $(\alpha \beta) \odot x=\alpha \odot(\beta \odot x)$

9 and 10. Distributive laws for scalar multiplication and vector addition
For all $\alpha \in K$, and all $x, y \in X, \quad \alpha \odot(\mathrm{x} \oplus \mathrm{y})=(\alpha \odot x) \oplus(\alpha \odot y)$

$$
(\alpha+\beta) \odot x=(\alpha \odot x)+(\beta \odot x) \quad \alpha, \beta \in K, \quad x \in X
$$

A function space is a vector space.

- Two functions can be added.
- A function can be multiplied by a scalar.
- Null function exists.
- Unit function exists.
- Negative of a function exists.
- Inverse of a function exists.
- 10 rules in the previous slide ought to be satisfied by a vector space for which vector addition and scalar multiplication are defined.

What kind of functions?

- Differentiable?
- Continuous?

Norm of a function

(i) $\|f\| \geq 0$
for all $f \in F$
(ii) $\|f\|=0$
if and only if $f=\theta$
(iii) $\|\alpha f\|=|\alpha|\|f\|$
$\alpha \in R, f \in F$
(iv) $\|f+g\| \leq\|f\|+\|g\| \quad f, g \in F$

Why do we need a norm?

Inner product

(i) $\langle f+g, \mathrm{~h}\rangle=\langle\mathrm{f}, \mathrm{h}\rangle+\langle\mathrm{g}, \mathrm{h}\rangle$
(ii) $\langle\alpha f, g\rangle=\alpha\langle f, g\rangle$
(iii) $\langle f, g\rangle=\langle\overline{f, g}\rangle$

The over bar denotes conjugation and is not necessary if x, y are real.
(iv) $\langle f, f\rangle \geq 0$ and

$$
\langle f, f\rangle=0 \text { if and only if } f=\theta
$$

Why do we need an inner product?

The concept of variation of a function

Variation of a functional

$\delta J(x ; h)=\lim _{\varepsilon \rightarrow 0} \frac{J(x+\varepsilon h)-J(x)}{\varepsilon}$

Apply L'Hospital's rule to get:

The simplest functional, $F(y, y$ ')

$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x)\right) d x$
$\delta_{y} J=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y} \delta y+\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}\right\} d x=0 \quad$ First variation of J w.r.t. $y(x)$.
The condition given above should hold good for any variation of $\mathrm{y}(\mathrm{x})$, i.e., for any δy But there is δy^{\prime}, which we will get rid of it through integration by parts.

Integration by parts...

$\delta_{y} J=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y} \delta y+\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}\right\} d x=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y} \delta y\right\} d x+\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}\right\} d x=0$
$\Rightarrow \int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y} \delta y\right\} d x+\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}}\left\{\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right) \delta y\right\} d x=0$
$\Rightarrow \int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right\} \delta y d x+\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{1}} ^{x_{2}}=0$
We can invoke fundamental lemma of calculus of variations now.

Hunamentantanan .

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right\} \delta y d x+\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{1}} ^{x_{2}}=0 \\
& \int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right\} \delta y d x=0 \text { and }\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{1}} ^{x_{2}}=0
\end{aligned}
$$

The two terms are equated to zero because the first term depends on the entire function whereas the second term only on the value of the function at the ends.
$\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0 \quad x \in\left(x_{1}, x_{2}\right)$
The integral should be zero for any value of δy. So, by fundamental lemma (Lecture 10), the integrand should be zero at every point in the domain.

Boundary conditions

The algebraic sum of the two terms may
$\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{1}} ^{x_{2}}=0$
$\left.\Rightarrow \frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{2}}-\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{1}}=0$
Thus,

$$
\left.\begin{array}{l}
\frac{\partial F}{\partial y^{\prime}} \delta y=0 \\
\Rightarrow \frac{\partial F}{\partial y^{\prime}}=0 \text { or } \delta y=0
\end{array}\right\} \begin{aligned}
& \frac{\partial F}{\partial y^{\prime}}=0 \text { or } \delta y=0 \text { at } x=x_{1} \\
& \text { and } \\
& \frac{\partial F}{\partial y^{\prime}}=0 \text { or } \delta y=0 \text { at } x=x_{2}
\end{aligned}
$$

Euler-Lagrange (EL) equation with boundary conditions

$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x)\right) d x \quad$ Problem statement

$$
\begin{array}{lll}
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0 & x \in\left(x_{1}, x_{2}\right) & \text { and } \\
\begin{array}{ll}
\frac{\partial F}{\partial y^{\prime}}=0 \text { or } \delta y=0 \text { at } x=x_{1} \\
\text { and }
\end{array} \\
\text { Differential equation } & \frac{\partial F}{\partial y^{\prime}}=0 \text { or } \delta y=0 \text { at } x=x_{2}
\end{array}
$$

Boundary conditions

Example 1: a bar under axial load

Axial displacement $=u(x)$ cross-section

Data: $L, E(x), A(x), p(x)$
Principle of minimum potential energy (PE)

Among all possible axial displacement functions, the one that minimizes PE is the stable static equilibrium solution.

Bar problem: E-L equation

$$
\operatorname{Min}_{u(x)} P E=\int_{0}^{L}\left(\frac{1}{2} E(x) A(x)\left(u^{\prime}(x)\right)^{2}-p(x) u(x)\right) d x
$$

$$
F=\frac{1}{2} E(x) A(x)\left(u^{\prime}(x)\right)^{2}-p(x) u(x) \quad \text { Integrand of the PE }
$$

$$
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0 \quad x \in(0, L)
$$

$$
\Rightarrow-p-\frac{d}{d x}\left(E A u^{\prime}\right)
$$

$\Rightarrow\left(E A u^{\prime}\right)^{\prime}+p=0 \quad$ Governing differential equation

Bar problem: boundary conditions

$\frac{\partial F}{\partial y^{\prime}}=0$ or $\delta y=0$ at $x=x_{1}$
and

$$
F=\frac{1}{2} E(x) A(x)\left(u^{\prime}(x)\right)^{2}-p(x) u(x)
$$

$\frac{\partial F}{\partial y^{\prime}}=0$ or $\delta y=0$ at $x=x_{2}$

$$
\delta u=0
$$

$E A u^{\prime}=0$ or $\delta u=0$ at $x=0$ and
$E A u^{\prime}$ or $\delta u=0$ at $x=L \quad E A u^{\prime}=0$

This means that y is specified; hence, its variation is zero. This is called the essential or Dirichlet boundary condition.

This means that the stress is zero when the displacement is not specified. It is called the natural or Neumann boundary condition.

Weak form of the governing equation

 $\operatorname{Min}_{u(x)} P E=\int_{0}^{L}\left(\frac{1}{2} E(x) A(x)\left(u^{\prime}(x)\right)^{2}-p(x) u(x)\right) d x$ $\delta_{y} J=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y} \delta y+\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}\right\} d x=0 \quad$ First variation is zero. $\delta_{u} P E=\int_{0}^{L}\left(E(x) A(x) u^{\prime}(x) \delta u^{\prime}-p(x) \delta u\right) d x=0$ for any δu
δu

$$
\int_{0}^{L}\left(E(x) A(x) u^{\prime}(x) \delta u^{\prime}\right) d x=\int_{0}^{L}(p(x) \delta u) d x
$$

Variation of u is like virtual displacement.

Internal virtual work = external virtual work

Three ways for static equilibrium

$$
\operatorname{Min}_{u(x)} P E=\int_{0}^{L}\left(\frac{1}{2} E(x) A(x)\left(u^{\prime}(x)\right)^{2}-p(x) u(x)\right) d x \quad \begin{aligned}
& \text { Minimum } \\
& \text { potential energy } \\
& \text { principle }
\end{aligned}
$$

$$
\delta_{y} P E=\int_{0}^{L}\left(E(x) A(x) \delta u^{\prime}-p(x) \delta u\right) d x=0 \text { for any } \delta u
$$ virtual work; The weak form

$\left(E A u^{\prime}\right)^{\prime}+p=0$
$E A u^{\prime}=0$ or $\delta u=0$ at $x=0$ and
$E A u^{\prime}$ or $\delta u=0$ at $x=L$

Force balance;
And boundary conditions.
The strong form.

Q: What is "weak" about the weak form? A: It needs derivative of one less order.

Example 2: is a straight line really the leastdistance curve in a plane?

From Slide 7 in Lecture 3

$\operatorname{Min}_{y(x)} L=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} d x$
Data: $x_{1}, x_{2}, y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}$
$\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0 \quad x \in\left(x_{1}, x_{2}\right)$
$\Rightarrow 0-\frac{d}{d x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=0$
$\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=C \quad \Rightarrow y^{\prime}=$ constant

So, straight line is
indeed the geodesic in a plane.

Example 3: Brachistochrone problem

From Slide 11 in Lecture 2

$\underset{y(x)}{\operatorname{Minimize}} T=\int_{0}^{L} \frac{\sqrt{1+\left(y^{\prime}\right)^{2}}}{\sqrt{2 g(H-y)}} d x$
$\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0$
$\sqrt{\frac{1+y^{\prime 2}}{8 g}} \frac{1}{(H-y)^{3 / 2}}-\left(\frac{y^{\prime}}{\sqrt{2 g\left(1+y^{\prime 2}\right)(H-y)}}\right)^{\prime}=0$
And we have Dirichlet (essential) boundary conditions at both the ends.

A functional with two derivatives: $F\left(y, y^{\prime}, y^{\prime \prime}\right)$

$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x), y^{\prime \prime}(x)\right) d x$
$\delta_{y} J=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y} \delta y+\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}+\frac{\partial F}{\partial y^{\prime \prime}} \delta y^{\prime \prime}\right\} d x=0$
First variation of J w.r.t. $y(x)$.

We now need to integrate by parts twice to get rid of the second derivative of y.

Integration by parts... twice!

$\delta_{y} J=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y} \delta y+\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}+\frac{\partial F}{\partial y^{\prime \prime}} \delta y^{\prime \prime}\right\} d x=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y} \delta y\right\} d x+\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}\right\} d x+\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y^{\prime \prime}} \delta y^{\prime \prime}\right\} d x=0$ $\Rightarrow \int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y} \delta y\right\} d x+\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}}\left\{\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right) \delta y\right\} d x+\left.\frac{\partial F}{\partial y^{\prime \prime}} \delta y^{y^{\prime}}\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}}\left\{\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right) \delta y^{\prime}\right\} d x=0$
$\Rightarrow \int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)\right\} \delta y d x+\left.\left(\frac{\partial F}{\partial y^{\prime}}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)\right) \delta y\right|_{x_{1}} ^{x_{2}}+\left.\frac{\partial F}{\partial y^{\prime \prime}} \delta y^{\prime}\right|_{x_{1}} ^{x_{2}}=0$ $=0$ gives differential equation by

Two sets of boundary conditions using the fundamental lemma.

$$
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)=0 \text { for } x \in\left(x_{1}, x_{2}\right)
$$

E-L equation and BCs for $F\left(y, y^{\prime}, y^{\prime \prime}\right)$

$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x), y^{\prime \prime}(x)\right) d x$
Things are getting lengthy;
Let us use shorthand notation.

$$
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)=0 \text { for } x \in\left(x_{1}, x_{2}\right), \frac{\partial F}{\partial y}=F_{y^{\prime}} ; \frac{\partial F}{\partial y^{\prime}}=F_{y^{\prime}} ; \frac{\partial F}{\partial y^{\prime \prime}}=F_{y^{\prime \prime}}
$$

$$
\left.\left(\frac{\partial F}{\partial y^{\prime}}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)\right) \delta y\right|_{x_{1}} ^{x_{2}}=0
$$

$$
\left.\left(F_{y^{\prime}}-\left(F_{y^{\prime \prime}}\right)^{\prime}\right) \delta y\right|_{x_{1}} ^{x_{2}}=0
$$

$$
\begin{aligned}
& \text { and } \\
& \left.\frac{\partial F}{\partial y^{\prime \prime}} \delta y^{\prime}\right|_{x_{1}} ^{x_{2}}=0
\end{aligned}
$$

$$
F_{y}-\left(F_{y^{\prime}}\right)^{\prime}+\left(F_{y^{\prime \prime}}\right)^{\prime \prime}=0 \quad \text { and }
$$

$$
\left.F_{y^{\prime \prime}} \delta y^{\prime}\right|_{x_{1}} ^{x_{2}}=0
$$

Example 4: beam deformation

From Slide 27 in Lecture 3

$\operatorname{Min}_{w(x)} P E=\int_{0}^{L}\left\{\frac{1}{2} E I\left(\frac{d^{2} w}{d x^{2}}\right)^{2}-q w\right\} d x$

$$
\begin{aligned}
& F=\frac{1}{2} E I\left(\frac{d^{2} w}{d x^{2}}\right)^{2}-q w \\
& F_{y}-\left(F_{y^{\prime}}\right)^{\prime}+\left(F_{y^{\prime}}\right)^{\prime \prime}=0
\end{aligned}
$$

Data: $q(x), E, I$

$$
\begin{aligned}
& -q-0+\left(E I w^{\prime \prime}\right)^{\prime \prime}=0 \\
& \Rightarrow\left(E l w^{\prime \prime}\right)^{\prime \prime}=q
\end{aligned}
$$

When E and I are uniform, we get the familiar: $E I w^{i v}=q$

Boundary conditions for the beam

$$
F=\frac{1}{-E I}\left(\frac{d^{2} w}{\underline{1}}\right)^{2}-q w \quad \text { Physical intepreteation }
$$

Either shear stress is zero or the transverse displacement is specified.

Either bending
and
$\left.F_{y^{\prime \prime}} \delta y^{\prime}\right|_{x_{1}} ^{x_{2}}=0$ moment is zero or the slope is specified.

Do we see a trend for multiple derivatives in the functional?

$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x)\right) d x$

$$
\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y(x), y^{\prime}(x), y^{\prime \prime}(x)\right) d x
$$

$$
F_{y}-\left(F_{y^{\prime}}\right)^{\prime}+\left(F_{y^{\prime}}\right)^{\prime \prime}=0
$$

$$
\left(F_{y^{\prime}}-\left(F_{y^{\prime}}\right)^{\prime}\right) \delta y_{x_{1}}^{x_{1}}=0
$$

and
$\left.F_{y^{\prime}} \delta y^{\prime}\right|_{x_{1}} ^{x_{2}}=0$

Three derivatives... $F\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)$

$$
\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{1}} F\left(y(x), y^{\prime}(x), y^{\prime \prime}(x), y^{\prime \prime \prime}(x)\right) d x
$$

$$
F_{y}-\left(F_{y^{\prime}}\right)^{\prime}+\left(F_{y^{\prime \prime}}\right)^{\prime \prime}-\left(F_{y^{\prime \prime \prime}}\right)^{\prime \prime \prime}=0
$$

$$
\left.\left(F_{y^{\prime}}\left(F_{y^{\prime \prime}}\right)^{\prime}+\left(F_{y^{\prime \prime}}\right)^{\prime \prime}\right) \delta y\right|_{x_{1}} ^{x_{2}}=0,\left.\quad\left(F_{y^{\prime \prime}}-\left(F_{y^{\prime \prime}}\right)^{\prime}\right) \delta y^{\prime}\right|_{x_{1}} ^{x_{2}}=0 \text { and }
$$

$$
\left.F_{y^{\prime \prime}} \delta y^{\prime \prime}\right|_{x_{1}} ^{x_{2}}=0
$$

Many derivatives... $F\left(y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}\right)$

$$
\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{1}} F\left(y(x), y^{\prime}(x), y^{\prime \prime}(x), \cdots, y^{(n)}(x)\right) d x
$$

$$
F_{y}-\left(F_{y^{\prime}}\right)^{\prime}+\left(F_{y^{\prime}}\right)^{\prime \prime}-\left(F_{y^{\prime}}\right)^{\prime \prime \prime}+\ldots=\sum_{i=0}^{n}(-1)^{i}\left(F_{y^{(0)}}\right)^{(i)}=0
$$

$$
\left(\sum_{i=j}^{n}(-1)^{i-j}\left(F_{y^{(i)}}\right)^{(i-j)}\right) \delta y^{(j-1)}=0 \quad \text { for } j=1,2, \cdots n
$$

Most general form with one function and many derivatives

What if we have two functions?

$\operatorname{Min}_{y_{1}(x), y_{2}(x)} J=\int_{x_{1}}^{x_{2}} F\left(y_{1}(x), y_{1}^{\prime}(x), y_{2}(x), y_{2}^{\prime}(x)\right) d x$
$\delta_{y_{1}} J=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y_{1}} \delta y_{1}+\frac{\partial F}{\partial y_{1}^{\prime}} \delta y_{1}^{\prime}\right\} d x=0$
$\delta_{y_{2}} J=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial F}{\partial y_{2}} \delta y_{2}+\frac{\partial F}{\partial y_{2}^{\prime}} \delta y_{2}^{\prime}\right\} d x=0$
Now, we need to take the first
variation with respect to both the functions, separately.

What if we have two functions? (contd.)

$\operatorname{Min}_{y_{1}(x) y_{2}(x)} J=\int_{x_{1}}^{x_{2}} F\left(y_{1}(x), y_{1}^{\prime}(x), y_{2}(x), y_{2}^{\prime}(x)\right) d x$

$$
F_{y_{1}}-\left(F_{y_{1}}\right)^{\prime}=0 \text { and }\left.\left(F_{y_{1}^{\prime}}\right) \delta y_{1_{1}}\right|_{x_{1}} ^{x_{2}}=0
$$

$$
F_{y_{2}}-\left(F_{y_{2}}\right)^{\prime}=0 \text { and }\left(F_{y_{2}^{\prime}}\right) \delta y_{2_{x_{1}}}{ }_{x_{1}}^{x_{2}}=0
$$

And, we will have two differential equations and two sets of boundary conditions.

Two unknown functions need two differential equations and two sets of
BCs. That is all!

Most general form: m functions with n derivatives.

The most general form

 when we have oneindependent variable x.
$\operatorname{Min}_{y(x)} J=\int_{x_{1}}^{x_{2}} F\left(y_{1}, y_{1}^{\prime}, \cdots, y_{1}^{(n)}, y_{2}, y_{2}^{\prime}, \cdots, y_{2}^{(n)}, \cdots, y_{m^{\prime}}, y_{m^{\prime}}^{\prime}, \cdots, y_{m}^{(n)}\right) d x$

$$
F_{y_{k}}-\left(F_{y_{k}}\right)^{\prime}+\left(F_{y_{k}^{\prime}}{ }^{\prime \prime}-\left(F_{y_{k}}\right)^{\prime \prime \prime}+\ldots=\sum_{i=0}^{n}(-1)^{i}\left(F_{y_{k}^{(i)}}\right)^{(i)}=0\right]
$$

$$
\left.\left(\sum_{i=j}^{n}(-1)^{i-j}\left(F_{y_{k}^{(i)}}\right)^{(i-j)}\right) \delta y_{k}^{(j-1)}=0 \quad \text { for } j=1,2, \cdots n\right]^{-k=1,2, \cdots, m}
$$

The end note

\square Euler-Lagrange equations $=$ first variation + integration by parts + fundamental lemma

Boundary conditions
Essential (Dirichlet)
Natural (Neumann)

Dealing with multiple derivatives along with boundary conditions (need to do integration by parts as many times as the order of the highest derivative)

Dealing with multiple functions (rather easy)

General form of Euler-Lagrange equations in one independent variable

