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Outline of the lecture
Review of functional, vector spaces, Gateaux variation
Euler-Lagrange equations
Boundary conditions
Multiple functions
Multiple derivatives
What we will learn:
First variation + integration by parts + fundamental lemma = Euler-
Lagrange equations
How to derive boundary conditions (essential and natural)
How to deal with multiple functions and multiple derivatives
Generality of Euler-Lagrange equations
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Functional
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:J F R→

A functional J is a mapping from a function 
space F to real number space R.

F R

A vector space of functions Real number space



A vector space
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 for all ,x y X x y X⊕ ∈ ∈ .x y y x⊕ = ⊕

( ) ( )x y z x y z⊕ ⊕ = ⊕ ⊕  for all x x x x Xθ θ⊕ = ⊕ = ∈

x x x x θ′ ′⊕ = ⊕ = For all ,  and all ,  x XK x Xα α∈ ∈ ∈

( ) ( ) ( )         , ,    x x x K x Xα β α β α β+ = + ∈ ∈  

( ) ( ) x xαβ α β=  ( )1 ;        and 0x x x θ= ∈ 

1. Closed under vector addition

3. Associative law for addition

2. Commutative law for addition

4. Additive identity

5. Additive inverse 6. Closed under scalar multiplication

7. Multiplicative identity

9 and 10. Distributive laws for scalar multiplication and vector addition

Vector addition
Scalar multiplication

⊕


8. Associate law for scalar multiplication



A function space is a vector space.

Structural Optimization: Size, Shape, and TopologyME260 / G. K. Ananthasuresh, IISc 5

• Two functions can be added.
• A function can be multiplied by a scalar.
• Null function exists.
• Unit function exists.
• Negative of a function exists.
• Inverse of a function exists.

• 10 rules in the previous slide ought to be 
satisfied by a vector space for which vector 
addition and scalar multiplication are 
defined.



What kind of functions?
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• Differentiable?
• Continuous?



Norm of a function
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(i)   0                      for all 

(ii)  0                      if and only if  

(iii)             ,   

(iv)       ,

f f F

f f

f f R f F

f g f g f g F

θ

α α α

≥ ∈

= =

= ∈ ∈

+ ≤ + ∈

Why do we need a norm?



Inner product 
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( )
( )
( )

( )

i     ,h f,h g,h

ii    , ,

iii   , ,         

The over bar denotes conjugation and is not necessary if ,  are real.
iv    , 0 and

          , 0 if and only if 

f g

f g f g

f g f g

x y
f f

f f f

α α

θ

+ = +

=

=

≥

= =

Why do we need an inner product?



The concept of variation of a function
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Domain D(X)

Function
f(x)

f(x)+εh(x)

h(x)



Variation of a functional

Structural Optimization: Size, Shape, and TopologyME260 / G. K. Ananthasuresh, IISc 10

( ) ( )
0

( ; ) lim
J x h J x

J x h
ε

ε
δ

ε→

+ −
=

( ) ( )
0

; dJ x h J x h
d ε

δ ε
ε =

= +

Apply L’Hospital’s rule to get:

Convenient for 
evaluating the 
variation.



The simplest functional, F(y,y’)
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First variation of J w.r.t. y(x).

The condition given above should hold good for any 
variation of y(x), i.e., for any 
But there is        , which we will get rid of it through 
integration by parts.



Integration by parts…
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We can invoke fundamental lemma of calculus of 
variations now.



Fundamental lemma…
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The two terms are 
equated to zero 
because the first term 
depends on the entire 
function whereas the 
second term only on 
the value of the 
function at the ends.

The integral should be zero for any 
value of       . So, by fundamental 
lemma (Lecture 10), the integrand 
should be zero at every point in the 
domain.



Boundary conditions
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The algebraic sum of the two terms may 
be zero without the two terms being 
equal to zero individually. We will see 
those cases later. For now, we will take 
the general case of both terms 
individually being equal to zero.

Thus,



Euler-Lagrange (EL) equation with 
boundary conditions
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and

Problem statement

Differential equation

Boundary conditions



Example 1: a bar under axial load
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Axial displacement = 

Principle of minimum potential energy (PE)

Strain energy Work potential

= area of 
cross-section

Among all 
possible axial 
displacement 
functions, the 
one that 
minimizes PE is 
the stable static 
equilibrium 
solution.



Bar problem: E-L equation
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Integrand of the PE

Governing differential equation



Bar problem: boundary conditions
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δ

δ

′ = = =

′ = =

0 or 0 at 0
and

or 0 at

EAu u x

EAu u x L

This means that y is specified; 
hence, its variation is zero. This 
is called the essential or 
Dirichlet boundary condition.

This means that the stress is zero 
when the displacement is not 
specified. It is called the natural
or Neumann boundary 
condition.

δ = 0u



Weak form of the governing equation
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( )δ δ δ δ′ ′= − =∫
0

( ) ( ) ( ) ( ) 0 for any
L

uPE E x A x u x u p x u dx u

( ) ( )δ δ′ ′ =∫ ∫
0 0

( ) ( ) ( ) ( )
L L

E x A x u x u dx p x u dx

Internal virtual work = external virtual work

First variation is zero.

δu
Variation of u
is like virtual 
displacement.



Three ways for static equilibrium
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( )
δ

δ

′′ + =

′ = = =

′ = =

0
0 or 0 at 0

and
or 0 at

EAu p
EAu u x

EAu u x L

Minimum 
potential energy 
principle

Principle of 
virtual work;
The weak form

Force balance;
And boundary 
conditions.
The strong form.

Q: What is “weak” 
about the weak form? 
A: It needs derivative 
of one less order.
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From Slide 7 in Lecture 3

So, straight 
line is 
indeed the 
geodesic in 
a plane.

Example 2: is a straight line really the least-
distance curve in a plane?



Example 3: Brachistochrone problem

22

From Slide 11 in Lecture 2

H

g

B

A Minimize

L And we have Dirichlet (essential) 
boundary conditions at both the ends.



A functional with two derivatives: F(y,y’,y’’)
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First variation of 
J w.r.t. y(x).

We now need to integrate by parts twice
to get rid of the second derivative of y.



Integration by parts… twice!
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δ δ δ δ δ δ δ

δ δ δ δ

       ∂ ∂ ∂ ∂ ∂ ∂′ ′′ ′ ′′= + + = + + =       ′ ′′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂       

    ∂ ∂ ∂ ∂ ∂  ′⇒ + − + −    ′ ′ ′′ ′′∂ ∂ ∂ ∂ ∂     

∫ ∫ ∫ ∫

∫ ∫

2 2 2 2

1 1 1 1

2 22 2

1 11 1

0
x x x x

y
x x x x

x xx x

x xx x

F F F F F FJ y y y dx y dx y dx y dx
y y y y y y

F F d F F d Fy dx y y dx y
y y dx y y dx

δ

δ δ δ

   ′ =  
   

        ∂ ∂ ∂ ∂ ∂ ∂  ′⇒ − + + − + =        ′ ′′ ′ ′′ ′′∂ ∂ ∂ ∂ ∂ ∂         

∫

∫

2

1

2 22

1 11

2

2

0

0

x

x

x xx

x xx

y dx
y

F d F d F F d F Fydx y y
y dx y y y dx y ydx

= 0 gives differential equation by 
using the fundamental lemma.

Two sets of boundary conditions



E-L equation and BCs for F(y,y’,y’’)
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Things are getting 
lengthy;
Let us use short-
hand notation.



Example 4: beam deformation
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From Slide 27 in Lecture 3

When E and I are uniform, we get the familiar: 



Boundary conditions for the beam
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( ) δ′′ ′ =
0

0
L

EIw w

Physical interpretation

Either shear stress 
is zero or the 
transverse 
displacement is 
specified. 

Either bending 
moment is zero or 
the slope is 
specified.



Do we see a trend for multiple 
derivatives in the functional?
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Three derivatives… F(y,y’,y”,y’’’)
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30

Many derivatives… F(y,y’,y”,…y(n))

( ) ( ) δ
−− −

=

 
− = = 

 
∑ ( )

( )
( 1)1 0 for 1,2,i

n i ji j j
y

i j
F y j n Most general 

form with 
one function 
and many 
derivatives



What if we have two functions?
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Now, we need to 
take the first 
variation with 
respect to both the 
functions, 
separately.



What if we have two functions? (contd.)
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And, we will 
have two 
differential 
equations and 
two sets of 
boundary 
conditions.
Two unknown 
functions need 
two 
differential 
equations and 
two sets of 
BCs. That is all!

and

and



Most general form: 
m functions with n derivatives.
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( ) ( ) δ
−− −

=

 
− = = 

 
∑ ( )

( )
( 1)1 0 for 1,2,i

k

n i ji j j
ky

i j
F y j n

The most 
general form 
when we have 
one 
independent 
variable x.



The end note
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Dealing with multiple derivatives along with boundary conditions
(need to do integration by parts as many times as the order of the highest 
derivative)

General form of Euler-Lagrange equations in 
one independent variable

Euler-Lagrange equations = first variation + integration by parts + 
fundamental lemma

Boundary conditions
Essential (Dirichlet)
Natural (Neumann)

Dealing with multiple functions (rather easy)
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