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Outline of the lecture

Review of functional, vector spaces, Gateaux variation
Euler-Lagrange equations

Boundary conditions

Multiple functions

Multiple derivatives

What we will learn:

First variation + integration by parts + fundamental lemma = Euler-
Lagrange equations

How to derive boundary conditions (essential and natural)
How to deal with multiple functions and multiple derivatives

Generality of Euler-Lagrange equations



Functional

A functional | is a mapping from a function
space F to real number space R.

J: F—>R

A vector space of functions Real number space




A VeCtOI‘ Sp ace Vector addition @

Scalar multiplication ©

1. Closed under vector addition 2. Commutative law for addition
x@®yeX forallx,ye X xX®y=y®dDux.

3. Associative law for addition 4. Additive identity
(x@y)@zzx@(y@z) xDO=0Dx=xforallxe X

5 Additive inverse 6. Closed under scalar multiplication
xPx =xPx=0 Foralla e K, andallxe X, a©OxeX
7. Multiplicative identity 8. Associate law for scalar multiplication
1O x=ux; and (00 xe0) (ef )Ox=a0(L0Ox)

9 and 10. Distributive laws for scalar multiplication and vector addition
Forall @ €K, andallx,ye X, « O(xEBy)z (a'Ox)GB(a'Oy)

(a+B)0x=(a0x)+(B0Ox) a,fekK, xeX



A function space is a vector space.

 Two functions can be added.

* A function can be multiplied by a scalar.
* Null function exists.

* Unit function exists.

* Negative of a function exists.

* Inverse of a function exists.

* 10 rules in the previous slide ought to be
satistied by a vector space for which vector

addition and scalar multiplication are
defined.



What kind of functions?

 Differentiable?
e Continuous?




Norm of a function

@ |f]=o0 forall f € F
i) |f]|= if and only if f =0
(iii) |l /| =|e||| /] aeR, feF

@) |[f +e|<|/]+lel  f.geF

Why do we need a norm?



Inner product

(i) (f+egh)=(th)+(gh)
(i) (af.g)=alf.q)
(iti) (f.g)=(/g)

The over bar denotes conjugation and 1s not necessary if x, y are real.

(iv) (f.,f)=0and
(f,f)=0ifand only if f =6

Why do we need an inner product?



The concept of variation of a function

flx)+eh(x)

f(x)

Function

h(x)
A W~

Domain D(X)



Variation of a functional

57 (x:h) = lim J(x + gh) — J(x)
E—0 E
Apply L'Hospital’s rule to get:

57(xh) =L (x+eh)| S

variation.
d&' e=0




The simplest functional, F(y,y’)
Min = J Fy(@),y/(x))dx

O ] = j< a—1:5y+ oF
P A

The condition given above should hold good for any

variation of y(x), i.e., for any dy

But there is 61", which we will get rid of it through

integration by parts.

oy’ rdx=0 First variation of J w.r.t. y(x).




Integration by parts...

) ]:J<8—F5y+ oF 6y’>dx=f<a—F5y>dx+j< oF oy’ rdx=0
Tosldy 9y ) L9y S CUA
:>j<a—F5y>dx+aF5y —J% 4| oF oy rdx =0
29y ay’ | ¢ (dx\ 9y
:J<8—F—d oF >6ydx+aF5y =0
Y dy dx\dy" ) " |

1

We can invoke fundamental lemma of calculus of
variations now.



Fundamental lemma...

The two terms are

x, ( ) *2 equated to zero
4 a_F — a ( oF ] >5y dx oF =0 because the first term
’ ’ depends on the entire
RN ay dx ay J ay X, function whereas the
x ( ) X, second term only on
f|loF d| oF oF the value of the
3 a_ - ] 3,/ -0 Yy dx=0 an 3,/ =0 function at the ends.
T 9y dx( 9y v,
3f 4 ( o The integral should be zero for any
g =0 xe(x,x,) value of Jy. So, by fundamental
dy dx\ dy’ lemma (Lecture 10), the integrand

should be zero at every point in the
domain.
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Boundary conditions

. The algebraic sum of the two terms may
oF 5 T 0 be zero without the two terms being
Jy’ Y= equal to zero individually. We will see

: those cases later. For now, we will take
I [ the general case of both terms
oy| =0 individually being equal to zero.

\ / Thus,

aF(Sy:O ) gF,zO or5y=0atx=x1
dy’ Y
> and
:>8F,=O or oy =0 OF
dy -=0 oroy=0atx=x,

_/  dy
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Euler-Lagrange (EL) equation with
boundary conditions

1\;{3151 ] = jF(y(x),y’(x))dx Problem statement

oF
E)F_ d BF, 0 xe(xllxz) od a_y’:O ordy=0 atx=x
dy dx\ dy e
. . . oF
Differential equation oy L oroy=0atr=x,

Boundary conditions



Example 1: a bar under axial load

p(x)

._._.-9..-9-..6-.9.-.—)._.+.-+.-+-._+-.9.-._> ...........

Axial displacement = y(x)

Strain energy Work potential
AN AN
L/ N/
2
Min PE = (%E(x)A(x)(u’(x)) —p(x) u(x) |dx
u(x)
0

Data: L, E(x), A(x), p(x)

Principle of minimum potential energy (PE)

X \ A(x) = area of

Ccross-section

Among all
possible axial
displacement
functions, the
one that
minimizes PE is
the stable static
equilibrium
solution.
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Bar problem: E-L equation

Min PE = ‘L[(%E(x)A(x)(u’(x))2 —p(x) u(x))dx

u(x)

F= %E(x)A(x)(u’(x))2 -p(x)u(x)  Integrand of the PE

OF d [ oF
dy dx\ dy’

):0 xe(0,L)
d

= —p—E(EAu’)

= (EAu’)’ +p=0  Governing differential equation



Bar problem: boundary conditions

oF
=0 oroy=0atx=x

Ay’ 1 Rt
and F=_E@AG)( () = p(x) u(x)
oF

-=0 oroy=0atx=x,
oy This means that y is specified;

Su=0 hence, its variation is zero. This
is called the essential or
EAu' =0 or Su=0 at x=0 Dirichlet boundary condition.
and
’r_ This means that the stress is zero

EAu or Su=0 at x=L EAu =0

when the displacement is not
specified. It is called the natural
or Neumann boundary
condition.



Weak form of the governing equation

u(x)

Min PE = j(%E(x)A(x)(u'(x))z — p(x) u(x))dx

\

5] =

y

f (OF . oF

] —5y +— 5y' >dx =0 First variation is zero.

|9y dy’

1

L

6 PE = j(E(x)A(x)u’(x)5u’—p(x) 5u)dx =0 for any Ju
0 ou

7 Variation of u

L
! (E(x) A(x)u'(x)Su’ ) dx = _[(P(x) Su)dx g’i;ﬁ;@

0

Internal virtual work = external virtual work
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Three ways for static equilibrium

L 1 2 Minimum
Min PE = —E(x)A(x)(u’(x)) — p(x) u(x) |dx potential energy
u(x) g 2 principle

virtual work;
The weak form

L . .
5yPE = J(E(x)A(x)ﬁu’ - p(x) 5u)dx =0 for any 6u Principle of
0

EA ' '-I- = . < M 7
(EAw) +p=0 Force balance: Q: What is “weak
EAu'=0 or ou=0 at x=0 And boundary about the weak form?
and conditions. A: It needs derivative

The strong form. of one less order.

EAu' or ou=0 at x=1L
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Example 2: is a straight line really the least-
distance curve in a plane?

From Slide 7 in Lecture 3

N\

y(x) ds (X,,72)

[\/\'

_—
Re
~
—

o<

\%

Data : x,, xz,y(x1)=y1, y(xz):yz
BF_ d| oF
dy dx\ dy’

): 0 xe(x,x)

S S
dx ,/1+y'2 So, straight

) line is
Yy __Cc o /= constant indeed the
1+ y,z geodesic in

a plane.
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Example 3: Brachistochrone problem

From Slide 11 in Lecture 2

\/1+

A Minimize T = I
i »(x) N
oF d| dF | _ 0
dy dx\ dy’
H (x ’2
lg 1+y 1 B ] 0
| 8 (H-9" |{2g0+y")H-)
\% L ) B
) L - And we have Dirichlet (essential)

boundary conditions at both the ends.



A functional with two derivatives: F(y,y’,y ")
Min ] = [ F(y(x),y/ (), 5" (x))dx

oF Sy First variation of
Yy

o] dx =0 Jw.rt y(x).

y \ay ay/ ay”

|
|
e%)
<
4

We now need to integrate by parts twice
to get rid of the second derivative of y.



Integration by parts... twice!

6,] = I{ 831/: ' 865” "}dx=I{6§5y}dx+j{75y}dx+_[{y ”}dx 0

2 (6F OF 2l d(er oF _ | | d(er
— [{Zsyld _ 4L sy bd (- sy bdx =0
{Govjar S0 TG oo o] i{dx(aﬂy}x

5 %'
x 2 "
3j<6F_d 813’ +d2 OF Sydx+ OF d | oF 5y 813 :O
ooy dx(ay') dx* oy oy' dx\ oy" T,
N )\ | J
. . v . . Y
= 0 gives differential equation by Two sets of boundary conditions

using the fundamental lemma.

oF d | dF d* | oF
— + =0 forxe(x ,x.)
dy dx\dy ) dx*\dy” b2




E-L equation and BCs for F(y,y ",y ")

X
2
: _ ; e Things are getting
Min | = j F (y(X),]/ (%), y (X)) dx lengthy;
y(x) x, Let us use short-
hand notation.

:
oF _d| JF + d” | oF =0 forxe(x ,x) ;g
dy dx\dy' ) dx*\dy” ooy Ty oyt Y

OF d [ oF - ' 2
_ Syl =0 F —(F ) =
[ayl dx(ay”)] y // ( v ¥’ )Sy O

==
e ——— ==
-
-

X

and Fy —( py,)' + (Fy”)” =0 and
oF 5y' =0 ,’// F ,,By, : =0
ay” X K y X,

1



Example 4: beam deformation

From Slide 27 in Lecture 3

( ) 7\ 2
o PE:;%EI(%T—W% F:%EI(%} —qw
Data: (x), R Eyedyec 5
q-0+(Em") =0
= (EW") =4

When E and I are uniform, we get the familiar: Ew" = q



Boundary conditions for the beam

1 ( d ZW\ : Physical interpretation
) T

, L Either shear stress
w(x) -0 is zero or the

(Elw”) 6w transverse
0 displacement is
’ "2 specified.
(1—" -(F,) )5y .

Either bending
=0 moment is zero or
the slope is

and (Elw") sw’
F 5y/ E -0 specified.




Do we see a trend tor multiple
derivatives in the functional?

hy/{jg)n = fF (y(x), y’(x))dx l\y{gl = J F (y(x), y'(x), y”(x))dx
F-(F, ) _0 F —(F,Y+(F,)"=0
(Fy, )5y x, 0 (Py,—(l—"y,,),jéyx =0
k and |
Fy,,c?y’[z =0



Three derivatives... F(y,y',v”",y"")
Min = [ F(y(0),/(0, (0,00

F—(F)+(E,)~(F,)" =0

(e o o <0 5 ~{e ) Jov] <o and

Fyméy ‘xl =0



Many derivatives... F(,y’y",...»™)

y(x)

Min | = [ E(y(0), /(") -,y (x))d

1

n i (1)
F—(E)+(F,) =(E,)" +..= 2(—1) (F m) =(

1=0

n i (i—7) .
[Z(_l) ] (Fy(i) ) ]53/(]1) =0 for ] — 1/ 2/' N Most general

form with
one function

and many
~derivatives



What if we have two functions?

v, (x)y, (%)

Min ] = [ F(y,(0(0) v, () d

‘#| oF JF . |
0 J=|{——0oy, +—oy rdx=0 Now, we need to
% %, %,
X, L y 1 y 1 ) take the first
x, [ ) variation with
0 J= J< a_ng + JoF Sy’ rdx=0 respect to both the
72 Yy 2 Yy’ : functions,
xl \ 2 2 J
separately.



What if we have two functions? (contd.)

And, we will
have two

Min ]= fF(yl(X),y{(x),yz(x),y;(x))dx differential

() equations and
two sets of
’ * boundary
Fy — (Fy, ) =0 and (P y )5y1 =0 conditions.

1 Two unknown

, x, functions need
F —(F,) =0 and (F, )5y2 =0 L0 ,
Y, U 72 X, differential
equations and
two sets of

BCs. That is all!
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Most general form:
m functions with »n derivatives.

X

y(x)

X

’ i I
Fo—(F Y +(F,) ~(F.)" +..= 2(—1) (F (i)) =0

1=0

=]

(Zn:(_l)ij(ljyk(i) )(ij)]5yk(j1) =0 for j=12,--

n

The most
general form
when we have

one
independent
~ variable x.

Min ]=fF(ylly{,---,yl‘”%yz,y;,---,yz‘”’,---,ym,y;,---,ym‘”’)dx

—k=1,2,---,m

s



The end note

Euler-Lagrange equations = first variation + integration by parts +
fundamental lemma

Boundary conditions
Essential (Dirichlet)
Natural (Neumann)

Dealing with multiple derivatives along with boundary conditions
(need to do integration by parts as many times as the order of the highest
derivative)

Dealing with multiple functions (rather easy)

General form of Euler-Lagrange equations in
one independent variable

Euler-Lagrange equations and their extension
to multiple functions and multiple derivatives
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