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Outline of the lecture

Functionals with two and three independent variables

Green and Gauss theorems for “integration by parts” in 2D and 3D
Euler-Lagrange equations

Boundary conditions

What we will learn:

How to deal with two and three independent variables.

Applying the divergence theorem to derive boundary conditions along
with the differential equation.

Examples

How to deal with any unconstrained calculus of variations problems.



Functional with two independent
variables, x and y

Yy %5 S = closed 2D
Min [ = F(Z,Z Z )dxd — F(Z,Z Z )ds domain in
z(x,y) J J ! Y 4 '! Y the xy plane.
Xo Ya ) aZ aZ
2% (oF  oF OF S| 0z _0z
52]__[_[ 5524-552 +E5Z &dXdy—O x ax y ay
X1 Y1 X y J ;
Notation.

Now, we need to get rid of 6z_and 6z and
Yy
get everything in terms of §z."
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A little trick to deal with 6z and 0z,
aF a[azr 52]_ aLaF J(SZ\
Bzx *oodx E)zx ox azx

—
a_F(SZy:a OF ¢ |_9|dF | \
azy ay\azy ) ay\azy )

a—1:5z+a—l:6z +a—F5z -dS =0

0z dz ° azy 4

X

:>J<8F—a oF |_9d|oF $6zdS+J<a 81—"52 +8 aFSz -dS =0
S dz dx|dz_ | dy azy ) dx| 0z_ Yy E)zy

Suitable for the application of the fundamental lemma.

N

5]=]

zZ




E-L equation for F (22,2

o a(ar) afar)
j< — — L0z dS =0 forany 0z
s |9z Jx| 0z

\ " Tx / ay\azyjj
/

() \
OoF d| JdF | d| OF
= —— — =0
dz dx\dz_ ) dy \azy )
Thus, writing the Euler-Lagrange equation follows the same

pattern as before. It is quite straightforward.

It is the boundary condition term that requires special
attention.

We had done integration by parts in the case of one
independent variable. Now also, we will do the same but ...
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Boundary condition of F(zz,z )

j 0| 9F 0z |+ o 9F 0z |;dS=0
. | dx| 0z dy| 0z
\ X y J

Green’s theorem is the equivalent of integration by parts in the two-
variables case

N

) . 9S is the

0Q OJP boundary and
J< ) _a A5 = J(de_l_Qdy) /thisisthe
s (0 9Y, IS boundary

-

) condition.
ook o0z |+ o | ok 0z |pdS = —a—Fdx+8—de z=0
ox | 0z oy\ 0z, s\ 0z, 0z

! <




Boundary condition of F(zz ,z )

,
| —5—Fdx+a—de
s\ 0z, 0z,
\
i
/
([ oF , oF
———dx+—-dy
\ 0z, 0z, )
dy o
—> — = ’:i
i E
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X

0z =0

If z(x,y) is specified at a point on
the boundary, the variation of z
is zero there. So, the boundary
condition is satisfied there.

-

at a point on the boundary
where z(x,y) is not specified
on the boundary.
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Example 1: Minimal surface spanned by
a given closed curve

3D surface 3D curve

z(x,y)

Min A::j\/1+zj+z;ds
S

OF 3 [ OF ] 2| oF |_,
7 2D area= § dz dx|dz_ | dy azy
0\ projection of / \ / \
the 3D surface 9 > 9 7
x + Yy =)
) ox \/1+zz+zz dy \/1+zz+zz
\ v \ )

(continued on the next slide)




Minimal surtace (soap film) problem

[ A ( )
z Z
) . |2 o,
ax\\/1+zi+z;) ay\\/l+z§+z§)
=z (1+zz)—22 Y
xx y woxy oy

(1+zi)=0

Boundary
condition is
trivial here
because the
boundary is
specified.
Hence, 5 7=

This equation shows that the mean curvature (if you know how it

looks like) of the minimal surface is zero.

Note that calculus of variations gives only the differential equation

and the boundary conditions but not the solution.

You have to use your usual bag of tricks to solve them!
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What it second derivatives are present in
two independent variables?

Min ==JF(Z,Z .z .,z ,Z ,Z )dS gt W gy
z(x,y) oy dee ) Ul ) )
S , Jd°z  0dz
S = closed 2D domain in the xy plane. Y dydx  dxady
F|OF . OF OF OF OF OF
5]:J<—5z+—5z +—0z +——0z +——0z_ +——0z dxdy=0
© T |0z dz " dz Y dz % o9z VY dz ¥
1L X y XX xy vy )
_ Oz | Now, weneed to apply the Green’s
) Z | We had used Green’s 5 XX 1 theorem twicg. ]ust. like we had
_ theorem once to get Z w [ done for the single independent
Z - variable case in Slide 16 in Lecture
) rid of these. Oz iabl in Slide 16 in L
J yy ) 11.
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The same little trick for 52,06z, ,and 6z

( \ 4 )

8_1—"52 = J | oF 0z |— J | oF 0z
0z - Bxkaz x) dx| 0z *
XX XX \

( )
a—Fﬁzyy: J | oF 52y _9|9F 5Zy
0z oy \azw J o \azyy J

8_1—"62 :148 aFcSz _ 9| oF 0z >+l<a aFSz _ 9| 9F 0z
dz. ¥ 219y 8zxy 1 dy 8zxy | 2|dx| 0z ] dx| 0z ’

With the above re-arrangements,

4

5]=J<8—F5z+a—1:5z +a—F5z +a—F52 +a—F52 +a—F5z cdxdy =0
© T |0z dz " dz ¥ 9z Y% o9z VYV dz ¥

1 L X Yy xx rY Yy J
becomes...



Tedious substitutions and expansions...

- / 2 e \
5]:j<ap—a oF | 9| dF >5zdS+J-< L 81—"52 +a aP6z +dS
© 5|9z dx| oz aykaz 5 | 9x| dz_ Yy Bzy

y J

: / /
) I 5, 19 OF Is, (10N OF N, L 91 9 |5, Lus
dx | 0z_ ! 28x\82 ! 28ykaz 7y Bzyy !

|
¥p) t—.

x xy Xy

d| oF 1 0| OF 10| OF 0| oF
0z |+— 0z |+— 0z |+ 0z
dx{dz_ ") 20y azxy Tl 2dx azxy 1 dy Bzw !/

Black part is ready for application of the fundamental lemma and thereby get the
differential equation.

Red part needs another step of re-arrangement to get rid of first derivatives of variations
of z.

Blue parts go to the boundary term.

daS

'

_I_
(f)t—‘




Splitting of terms... once again.

d| OF 0
0z =

ox azxx Yoodx

1 8(81:\ 1

— 0z =—1

2 0x| 0z )
\ )

1 8(813\ 1

2arl 9z 05T a

2 y\ ny/

0

oF

dx

0

0z
XX

|

(

J

b

dy

0x

82

OF |

o

\
0z

S N—

8zxx )

[az

0z

( \

oF

) dxdy

82

\azxy )
\
( oF

) dxdy

0z
N,

0z

0z

0z

'




Split-terms of Slide 13 into Slide 12...
Mj{ap_ . [aFJ_ . [ap]+ 822( OF ]+ 7’ [BF ]+ 822[ OF ]}&ds
©¢|0z dx(odz | dy azy dx~{ dz_ | dyox azxy dy azw -
becomes
, I{E[B_F&}i[a_%z}ds et
s | 0x azx Yy 8zy equations

become

lengthier ®
+j 9 a—FSZ +li a—F(Sz +li a—F5z +i 8_1352 das
s|ox\dz_ T ) 29y azxy Y] 2dx|0dz. Y] dy|ldz 7

+J d| 90| OF 5z +18 d| oF 55 +18 d| oF 62+a Jd| JF 52 | lag
s | 9x| dx| dz 2 dy| dx| 0z 20x| dy| dz dy| dy| 0z
X xy xy vy

Black part is ready for application of the fundamental lemma and thereby get the
differential equation.

Blue parts go to the boundary term. The last line of terms are the additional boundary terms
of the second re-arrangement step. Now, these are ready for the application of the Green’s
theorem.
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Finally... E-L equations for...

Min ]::JF(Z,Z Z ,Z ,Z2 ,Z )dS

X Yy XX XYy vy

By applying the fundamental lemma to...

oF d | dF d | oF 0° | OF d° | oF d° | oF
_[ — - + + + 0zdS=0
5[0z dx(dz ) dy| oz dx*| dz_ | dyox az dy” Jz,,

we get the Euler-Lagrange equation:

Don't
oF afor) alar| @(ar) & [or | &[ar] YO0
_ _ + + + = (0 a pattern
dz dx\dz | dy| 9z, dx*| 0z ) dyox N dy” Z here
too?
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Boundary terms

Collect terms containing these two from Slide 13
and apply the Green’s theorem.

o(y 2
a_x( ) ay( )
Then, we will get:

Write A, B, and

I(A)52+J‘(B)52x +é£(C)52y =0 C yourself!

05 0S

Make each of the terms above go to zero.

Since we had second derivatives in the functional, we can
specify the first derivatives of z here.

An example will make it clear what this means...
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Example 2: deformation of a plate

A plate subjected to a transverse load ¢(x,y).
Its deformation w(x,y) can be determined by
minimizing the potential energy.

Min PE =

w(x,y)

Data: D =
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2+°E

K[

O’w 0w
_|_

x> dy’

3(1-v)’

,t,E,V;C],S

Here, the potential energy is the functional
and it depends on two independent
variables, namely, x and y. It involves
second derivatives of w(x,y).

0°w 0°w

2
—2(1-v)s
) =) dx* dy’

Compare with the

1

o°w

dxdy

'

N )
j2

v,

s—quw |dxdy

functional in slide 10.
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Euler-Lagrange equation for a plate

oF_o(ar| aor| @(ar) o [ar| @ [aF]|
0z dx(0z ) dy| 9z dx*| 0z | dyox 0z dy” 0z,

( 2 2 2 ( 2 2 2 2\ | ]
P D< 8w+8w _2(1_v)<8w8 w | Jw S - 7 =70
2 [\ ox* 9y’ dx* dy®> | dxdy
JoF d | oF d | oF d° | oF d° | OF d° | oF
— — + + + =0
dw dx|{dw ) dy|dw | dx*(dw | dyox|dw | dy | dw

9’ 0° Note that it is a fourth
=DV*w=D{— — =
DV w= A\, TW T\ W,, W =4  degree differential
ox #T oy v .
equation.
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Boundary conditions for a plate

aj;( kw+ajs( )6wx+aj;( )&Uy:()

A plate may be fixed on a portion of the boundary. Then, 9w = ()

It may not be allowed to bend on a portion of the boundary.
Then,

5w —0 or dw =0 Oralinear combination of these may
Y be zero.

The terms in the brackets will be zero when displacement or
slope are not restricted... just like in a beam.
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Functional with three independent
variables, x,, x,, and x;

%}1}1’21) —]:fflf(uu U u)dxdydz-jl—“(uu U u)dV
BF oF oF oF |

8 J=[{==8u+——0u_+—08u +—38u_rdV =0
oy BM du_° Bu 7 du

N\

J

We need to do equivalent of integration by parts in three dimension
now. The Green’s theorem was integration by parts for two
dimensions.

The Gauss divergence theorem is “integration by parts” for three
dimensions!
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Splitting of terms... as before.

8_F5u:8 81—“5” _8 oF ou
Bux o dx aux ox Bux

( ) () Red goes to
a_Fau = J | oF Su |— o | oF Su boundary term
du, 7 dylou | dy\du And blue to the

differential
8_F5u — d [BF 5u]— J [81—" ]51/1 equation.




Substitution leads to...

N

5,]=| 9 sur L su + L sy + X su Lav =0
’ | Ou ou, ~ ou, 7 ou, -

N

Ready for
z ) application
of the

\ fundamental
N FG_F_E} OF | 0| oF | O OF  SudV e t
ou ox\ou, ) oy|\ou | 0Oz|ou,

J

+j< g 8135” +8 aF&u +a 81:514 -dV =0
ox |\ ou, oy |\ ou, Oz \ ou_

\

Vv

Needs the application of the divergence
theorem.



Application of divergence theorem

vy

Vv

de!(U-n)dS —

Vv

|l |l
» —y < —
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(8 oF 8(81—” |
J< ou ou
ox aux

-

\

+88
]/\ uy Y,

\
oF ~ oF ~ OF ~

—1+—J+—k
ou ou ou
\ X y z

(aFc oF ~ aFA\

—i+—]+—k |

\

\aux auy Buz )

d| OF
_|_
82[8uz

N

01U dS

ou:s|dV
J

Divergence theorem.
n is the unit outer normal to the
surface S that encloses volume V.

N

5u)>dV’

J

Now, the application of
the fundamental lemma
gives the condition for the

boundary.
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EL equation and BC for the 3D case

Z, Y, X%,

%I;I;) J = !JJF(u,ux,uy,uz)dxdydz = ‘J;F(u,ux,uy,uz)dv

()
BF_ d {BF] d | oF d [813 }:0 Differential

du  dx| du _aykauy )_82 ou_ equation

\

( A
< 8_F;+8_F}+8_F12 nlsu=0 Boundary

Ju Ju Ju conditions
. x Y »Qk/, Either one is zero on the
boundary.




Example 3: Elastic detformation of a 3D

bOdy Here we have three functions in three independent variables.

N

( 3 r
ul(xo%z) Uy (%), X, X;)

U =11y(X, ,2) = Uy (X, X5, X;)

'

Min PE:J(%E:D:S—b-u) d€)

Q
Data:D,b,Q2 \ u, (X, ),z ) (X, %, %)
1| Ou. Ou, Note the potential energy
E; =T “+—L| 1,j=12,3 functional is of the same form as the
2{ Ox i ox, functional on Slide 20.
/. I

V .(]) . 5) +b=0 Euler-Lagrange equation

{(D : g)n}é'u =( Boundary condition; the traction condition

. /
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The end note

Functionals with two independent variables and first derivatives

Splitting of terms

Application of the Green’s theorem as equivalent of integration of parts in
two dimensions

Soap-film problem as an example

Functionals with two independent variables and second derivatives
Plate problem as an example

Functionals involving three independent variables

Functionals involving two and three
independent variables

Splitting of terms; application of the divergence theorm

Example of a 3D elastic body \/

ME 260 / G. K. Ananthasuresh, IISc Structural Optimization: Size, Shape, and Topology 26



	Lecture 13��Calculus of Variations with�Functionals Involving �Two and Three Independent Variables
	Outline of the lecture
	Functional with two independent variables, x and y
	A little trick to deal with 
	E-L equation for 
	Boundary condition of 
	Boundary condition of 
	Example 1: Minimal surface spanned by a given closed curve
	Minimal surface (soap film) problem
	What if second derivatives are present in two independent variables?
	Slide Number 11
	Tedious substitutions and expansions…
	Splitting of terms… once again.
	Split-terms of Slide 13 into Slide 12…
	Finally… E-L equations for…
	Boundary terms
	Example 2: deformation of a plate
	Euler-Lagrange equation for a plate
	Boundary conditions for a plate
	Slide Number 20
	Splitting of terms… as before.
	Substitution leads to…
	Application of divergence theorem
	EL equation and BC for the 3D case
	Example 3: Elastic deformation of a 3D body
	The end note

