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Outline of the lecture
Functionals with two and three independent variables
Green and Gauss theorems for “integration by parts” in 2D and 3D
Euler-Lagrange equations
Boundary conditions
What we will learn:
How to deal with two and three independent variables.
Applying the divergence theorem to derive boundary conditions along 
with the differential equation.
Examples
How to deal with any unconstrained calculus of variations problems.
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Functional with two independent 
variables, x and y

3
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= closed 2D 
domain in 
the xy plane.

Now, we need to get rid of        and       and 
get everything in terms of      .

Notation.
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A little trick to deal with 
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Suitable for the application of the fundamental lemma.
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E-L equation for 
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for any

Thus, writing the Euler-Lagrange equation follows the same 
pattern as before. It is quite straightforward. 
It is the boundary condition term that requires special 
attention.
We had done integration by parts in the case of one 
independent variable. Now also, we will do the same but …
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Boundary condition of 
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Green’s theorem is the equivalent of integration by parts in the two-
variables case

δ δ δ
∂

     ∂ ∂ ∂ ∂ ∂ ∂ + = − + =        ∂ ∂ ∂ ∂ ∂ ∂      
∫ ∫ 0
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F F F Fz z dS dx dy z
x z y z z z

is the 
boundary and 
this is the 
boundary 
condition.
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δ
∂

 ∂ ∂
− + =  ∂ ∂ 

∫ 0
S y x

F Fdx dy z
z z

Boundary condition of 

 ∂ ∂
− + =  ∂ ∂ 

0
y x

F Fdx dy
z z at a point on the boundary 

where z(x,y) is not specified 
on the boundary.

If z(x,y) is specified at a point on 
the boundary, the variation of z
is zero there. So, the boundary 
condition is satisfied there. 

∂
∂

∂
∂

′⇒ = = y

x

F
z

F
z

dy y
dx
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Example 1: Minimal surface spanned by 
a given closed curve
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3D curve 3D surface

2D area = 
projection of 
the 3D surface

(continued on the next slide)
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Minimal surface (soap film) problem
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This equation shows that the mean curvature (if you know how it 
looks like) of the minimal surface is zero.
Note that calculus of variations gives only the differential equation 
and the boundary conditions but not the solution.
You have to use your usual bag of tricks to solve them!

Boundary 
condition is 
trivial here 
because the 
boundary is 
specified. 
Hence, 
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What if second derivatives are present in 
two independent variables?
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S = closed 2D domain in the xy plane.

We had used Green’s 
theorem once to get 
rid of these.

Now, we need to apply the Green’s 
theorem twice. Just like we had 
done for the single independent 
variable case in Slide 16 in Lecture 
11.
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The same little trick for 

With the above re-arrangements, 

becomes…
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Tedious substitutions and expansions…
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Black part is ready for application of the fundamental lemma and thereby get the 
differential equation.
Red part needs another step of re-arrangement to get rid of first derivatives of variations 
of z.
Blue parts go to the boundary term.
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Splitting of terms… once again.
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Split-terms of Slide 13 into Slide 12…
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Black part is ready for application of the fundamental lemma and thereby get the 
differential equation.
Blue parts go to the boundary term. The last line of terms are the additional boundary terms 
of the second re-arrangement step. Now, these are ready for the application of the Green’s 
theorem. 

Font 
becomes 
smaller as 
equations 
become 
lengthier 
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Finally… E-L equations for…
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By applying the fundamental lemma to…

we get the Euler-Lagrange equation:
Don’t 
you see 
a pattern 
here 
too?
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Boundary terms
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Collect terms containing these two from Slide 13
and apply the Green’s theorem.

Then, we will get:

( ) ( ) ( )δ δ δ
∂ ∂ ∂

+ + =∫ ∫ ∫ 0x y
S S S

z z zA B C

Make each of the terms above go to zero.
Since we had second derivatives in the functional, we can 
specify the first derivatives of z here. 
An example will make it clear what this means…

Write A, B, and 
C yourself!
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Example 2: deformation of a plate
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A plate subjected to a transverse load q(x,y). 
Its deformation w(x,y) can be determined by 
minimizing the potential energy.
Here, the potential energy is the functional 
and it depends on two independent 
variables, namely, x and y. It involves 
second derivatives of w(x,y).

Compare with the 
functional in slide 10.
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Euler-Lagrange equation for a plate
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Note that it is a fourth 
degree differential 
equation.
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Boundary conditions for a plate
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From slide 16

A plate may be fixed on a portion of the boundary. Then, 

It may not be allowed to bend on a portion of the boundary. 
Then, 

Or a linear combination of these may 
be zero.

The terms in the brackets will be zero when displacement or 
slope are not restricted… just like in a beam.
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Functional with three independent 
variables, x1, x2, and x3

We need to do equivalent of integration by parts in three dimension 
now. The Green’s theorem was integration by parts for two 
dimensions.
The Gauss divergence theorem is “integration by parts” for three 
dimensions!
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Splitting of terms… as before.

21

Red goes to 
boundary term
And blue to the 
differential 
equation.
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Substitution leads to…
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Ready for 
application 
of the 
fundamental 
lemma

Needs the application of the divergence 
theorem.
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Application of divergence theorem

23

Divergence theorem.
n is the unit outer normal to the 
surface S that encloses volume V.

Now, the application of 
the fundamental lemma 
gives the condition for the 
boundary.
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EL equation and BC for the 3D case

24

Differential 
equation

Boundary 
conditions

Either one is zero on the 
boundary.
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Example 3: Elastic deformation of a 3D 
body
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= + =  ∂ ∂ 

Note the potential energy 
functional is of the same form as the 
functional on Slide 20. 

Euler-Lagrange equation

Boundary condition; the traction condition

Here we have three functions in three independent variables.
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The end note
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Functionals involving three independent variables

Splitting of terms; application of the divergence theorm
Example of a 3D elastic body

Functionals with two independent variables and first derivatives 

Splitting of terms
Application of the Green’s theorem as equivalent of integration of parts in 
two dimensions
Soap-film problem as an example

Functionals with two independent variables and second derivatives
Plate problem as an example
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