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Outline of the lecture

Global and local constraints

Dealing with global constraints

Euler-Lagrange equations with constraints; Lagrange multipliers
Inequality constraints

What we will learn:

How to identify a constraint as global as local

When is Lagrange multiplier a scalar

How to write Euler-Lagrange equations and boundary conditions for a
problem with global constraints

Interpreting the Lagrange multipliers and understanding the
complementarity conditions



Global vs. local constraints

Global vs. local here pertains to whether a constraint is imposed at each
point in the domain or it is imposed on a quantity that pertains to the
entire domain.

Global constraints pertain to the entire domain.

Local constraints are imposed at every point in the domain, individually.

Mathematically, it tells whether a constraint is a functional or a function.
Global constraint is a functional
Local constraint is a function. It can also be a differential equation.

It also has implications when we discretize.
Upon discretization, a global constraint gives rise to only one constraint.

A local constraint, on the other hand, gives as many constraints as the
number of discretization points.



Examples of global and local constraints

Global constraints Local constraints
Length of a curve Upper or lower bound on a curve
Area of a surface Bounds on the deflection of a

Time of travel structure

Weight of a structure Bounds on stress

Deflection at a particular point Governing differential equation

Maximum Stress Bounds on the mode shape
Buckling load

Natural frequency ltt is ir:;po;tan;
O undaderstan

this difference.



Global constraint: isoperimetric problem

. ¢ , This problem statement
l\y/{gl /= J F(y (%), y'(x) )dx means that we need to
L find y(x) that minimizes
Subjectto J and satisfies the

x, , ) equality constraint, K.
K= J.G(y(x),y (x))dx— K =0

1

It is a global constraint because K here depends on the entire
domain. It is a functional. It is a single value.

A problem with a global constraint is also called isoperimetric
problem. This is because the perimeter constraint is the historic
global constraint.
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How do we solve this?

Min | = J F(y(0),y'(x))dx

Subject to Recall how we handled
equality constraints in

K = J. G(y(x), y’(x))dx ~K =0 finijte—yari.able
x optimization.

1

You may recall from that...

We linearized the constraint and used the first-order term to
eliminate a variable and made the problem unconstrained.
We also came up with the concept of Lagrange multiplier.
Here too, we will follow the same idea.
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Equivalent of first-order term of a

funCtiOnal From Eq. (6) in Slide 26 of Lecture 9
r§J A
A =Jy+h)-J) =12 +elAc
. §y x:; y
5_’]:]?_1(]7’) W) A
oy 7 dx ”’

N

Variational derivative,
which is the expression in
the Euler-Lagrange
equation.

(first-order approximation
of a perturbed functional)
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First-order term of the global constraint

K= TG(y(x),y’(x))dx ~-K =0

1

fé‘K 3
AK=K(y+h)—-K(y)=3—| +&rAo
L5yx:; y
5K _ 4G
oy Y odx 7

The first-order term shows that the constraint has non-zero value
whenever we perturb the function at a point. So, it won't satisfy
the equality constraint anymore.

So, we will perturb y(x) at two points...



Two perturbations of the global constraint

AK, =Ko +h-K0)={%|  +2,tA0,  Ac,=5, Ax,
Y X=X,
oK

O Lo lAg Ao, =0y, Ax,
5 y b b

L X=X, )
We choose x, and x, such that the first-order changes due to the two
perturbations cancel each other and we retain the feasibility of the

constraint.

AK, = K(y+h)—K(y)=+

AKa+AKb:O
oK oK

=< — +& Ao+ — +¢&, >A0'b:O
OVl | " |9V
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One perturbation of the function in
terms of the other

51(
5y

X=X

—> Ao, =—

+ &
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oK
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x:xb

Ao

+ &

>A0'b =0

In order to divide like this,
we require that there should
be at least one point x where
the variational derivative is
not zero. This is the
equivalent of constraint
qualification of finite-

variable optimization. See
Slide 13 of Lecture 5.
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Perturbation of the objective functional at
the same two points by the same amounts

A, =J(y+h)—J(y)=+

A, =J(y+h)—J(y)=+

A +A, =N

N

o0J
= +&

X=X

\
-

\

b

Ao+ <
a

5y ’

a J
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Eliminating one perturbation...

yx:x 50]
AO‘b=—> - iAO'a A]+b:<£ +& Ao+ — + &, >AO'b
5K B K24 P IR K2 4

15yl "5 \ | | /J
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oK
) . ) X <5— +& ¢
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A.]a+b:<— +& >A0'a—<— +&, 1 2 <A0'a
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Detining a multiplier...
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First order change in the objective functional

oJ oK
A =1 t+& r+ A — t+& ¢ |Ao,

2. Y|y,

|\ W, \ J ]
i i This is zero because
oJ oK now it is the first-
:>A‘]a+b = 5_ +A o +& AO-a :O<:ordertermdueto
Vlx=x Y lx=x one arbitrary

feasible
O0.J oK perturbation
— + A—— =0 Dbecause Ao #0 because the other
o) y o) y a one is eliminated.
X=X, X=X,

and

Ao, =0 (the second
order term)
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Putting things together...

oJ From Slide 13...
9 5— + &, [ . N - N
y X=X
B G BN £-7/ N WY R
5K 0y 0¥ |\,
—  +e& ¢ ~ / y J
oyl
57 SK N Since X, and x, are arbitrary, the
=>— +A— =0 following should be true for any
OV, OV |, x. And A must be a constant.
From Slide 14...
oJ oK
81| OKl FA—=0
x—xb
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Lagrangian can now be defined.

Min | = j F(y(x),y/(0))dx

Subiject to

K = ]%G(y(x),y’(x))dx— K =0

1

J

Min L= TF (y(x),y’(x))dx

y(x)

>+ A<

TG(y(x),y’(x))dx -K' =0

'

fo(y(x»y'(x))dx
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Necessary conditions

Equations \
6J 6K - ' | |
5); | A—5y =0 JG(y(x),y (x))dx—[( =0
Differential equation Scalar !111 Jtion
X A
Fuﬁgtign Scalar variable

\ Unknowns /
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What if we have an inequality constraint?

Min [= | F Yy (x)|d
fin | j (460, y/(x) )
Subiject to

K= TG(y(x),y’(x))dx— K <0 KA[le(]/(X)/]/'(x))dx—K }:0
k A0

We introduce complementarity condition and require
non-negativity of the Lagrange multiplier...

just as we did in finite-variable optimization.

The same argument applies here too.
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Example 1: hanging chain problem

h h
@ @ Min PE:j(pgy) dS:jpgy 149" dx

] R ) 0 0
l g - Subject to
' ;
A j(\/1+y'2)dx—L:O
(x) ;

X Data: L, y(0)=0,h,y(h)=v,p,g

N
7

ds h h
(hv) l\y/{gl L:jpgy 1+y'2dx+A( j( [+ ) ]

0

Mass per unit
pzlength of the Data: LaY(O):OahJ(h):Vapag

chain
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Necessary conditions for the hanging
chain problem

h (

Min L:jpgy\/ler'z dx+ A jz(\/ler'z)dx—L
y(x) g W

\

J
Data: L,y(0)=0,h, y(h)=v,p, g

5,L=0 57 0L d[aL]:O
¥ 0y dx\ 0y

h
j(\/l Ty . ) dx—L =0 Differential equation

0
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Example 2: Stiffest beam of given
volume

L 3 2 2]
1 £
i s [ ()]
b(x) ) 2 12 dx
SubJeCt to This is a local
d( d*w) constraint; it is valid
x2 LEde x> J +q=0 ﬁ‘ at every point in the

domain.

L

J.bddx—V=l= <0 | We now know

0 how to deal with
this global

constraint

Data: L,q(x),d,V ,E

ME260 / G. K. Ananthasuresh, IISc Structural Optimization: Size, Shape, and Topology 21



The end note

Distinguishing between global and local constraints

First-order perturbation of a functional using the concept of

Variational derivative

Two perturbations to cancel the effects of each other to retain feasibility of
The equality constraint.

Concept of Lagrange multiplier and Lagrangian

Necessary conditions
Extension to inequality constraints

Global constraints
in calculus of variations

Necessary constraints for global constraints
in calculus of variations
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