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Outline of the lecture
Global and local constraints
Dealing with global constraints
Euler-Lagrange equations with constraints; Lagrange multipliers
Inequality constraints
What we will learn:
How to identify a constraint as global as local
When is Lagrange multiplier a scalar 
How to write Euler-Lagrange equations and boundary conditions for a 
problem with global constraints
Interpreting the Lagrange multipliers and understanding the 
complementarity conditions
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Global vs. local constraints
Global vs. local here pertains to whether a constraint is imposed at each 
point in the domain or it is imposed on a quantity that pertains to the 
entire domain.
◦ Global constraints pertain to the entire domain.
◦ Local constraints are imposed at every point in the domain, individually.

Mathematically, it tells whether a constraint is a functional or a function.
◦ Global constraint is a functional
◦ Local constraint is a function. It can also be a differential equation.

It also has implications when we discretize.
◦ Upon discretization, a global constraint gives rise to only one constraint.
◦ A local constraint, on the other hand, gives as many constraints as the 

number of discretization points.
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Examples of global and local constraints

Length of a curve
Area of a surface

Time of travel
Weight of a structure

Deflection at a particular point
Maximum stress

Buckling load
Natural frequency
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Upper or lower bound on a curve
Bounds on the deflection of a 

structure
Bounds on stress

Governing differential equation
Bounds on the mode shape

Global constraints Local constraints

It is important 
to understand 
this difference.
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Global constraint: isoperimetric problem
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This problem statement 
means that we need to 
find y(x) that minimizes 
J and satisfies the 
equality constraint, K.

It is a global constraint because K here depends on the entire 
domain. It is a functional. It is a single value.
A problem with a global constraint is also called isoperimetric 
problem. This is because the perimeter constraint is the historic 
global constraint.
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How do we solve this?
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Recall how we handled 
equality constraints in 
finite-variable 
optimization.

You may recall from that…
We linearized the constraint and used the first-order term to 
eliminate a variable and made the problem unconstrained.
We also came up with the concept of Lagrange multiplier.
Here too, we will follow the same idea.
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Equivalent of first-order term of a 
functional
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From Eq. (6) in Slide 26 of Lecture 9

(first-order approximation 
of a perturbed functional)

Variational derivative, 
which is the expression in 
the Euler-Lagrange 
equation.
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First-order term of the global constraint
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The first-order term shows that the constraint has non-zero value 
whenever we perturb the function at a point. So, it won’t satisfy 
the equality constraint anymore.
So, we will perturb y(x) at two points…



Structural Optimization: Size, Shape, and TopologyME260 / G. K. Ananthasuresh, IISc

Two perturbations of the global constraint
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We choose xa and xb such that the first-order changes due to the two 
perturbations cancel each other and we retain the feasibility of the 
constraint.
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One perturbation of the function in 
terms of the other
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In order to divide like this, 
we require that there should 
be at least one point x where 
the variational derivative is 
not zero. This is the 
equivalent of constraint 
qualification of finite-
variable optimization. See 
Slide 13 of Lecture 5.
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Perturbation of the objective functional at 
the same two points by the same amounts
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Eliminating one perturbation…
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Defining a multiplier…
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First order change in the objective functional
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This is zero because 
now it is the first-
order term due to 
one arbitrary 
feasible 
perturbation 
because the other 
one is eliminated.

0
a ax x x x

J K
y y

δ δ
δ δ= =

+ Λ = because

0aε σ∆ =and (the second 
order term)
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Putting things together…
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From Slide 13…

From Slide 14…

Since xa and xb are arbitrary, the 
following should be true for any 
x. And     must be a constant.
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Lagrangian can now be defined.
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N
ecessary coniditon

Feasibility coniditon
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Necessary conditions
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Unknowns

Function 

Differential equation

Scalar variable

Scalar equation

Equations
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What if we have an inequality constraint?
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We introduce complementarity condition and require 
non-negativity of the Lagrange multiplier…
just as we did in finite-variable optimization.
The same argument applies here too.
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Example 1: hanging chain problem
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Necessary conditions for the hanging 
chain problem
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Example 2: Stiffest beam of given 
volume 
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We now know 
how to deal with 
this global 
constraint

This is a local 
constraint; it is valid 
at every point in the 
domain.
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The end note
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Necessary conditions
Extension to inequality constraints

Necessary constraints for global constraints 
in calculus of variations

Distinguishing between  global and local constraints

First-order perturbation of a functional using the concept of 
Variational derivative 
Two perturbations to cancel the effects of each other to retain feasibility of
The equality constraint.

Concept of Lagrange multiplier and Lagrangian
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