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Outline of the lecture
Global and local constraints
Dealing with local constraints
Euler-Lagrange equations with constraints; Lagrange multipliers
Inequality constraints
What we will learn:
How to identify a constraint as global as local
When is Lagrange multiplier a function 
How to write Euler-Lagrange equations and boundary conditions for a 
problem with local constraints
Interpreting the Lagrange multipliers and understanding 
complementarity conditions for a general problem
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Global vs. local constraints
Global vs. local here pertains to whether the constraints is imposed at 
each point in the domain or it is imposed on a quantity that pertains to 
the entire domain.
◦ Global constraints pertain to the entire domain.
◦ Local constraints are imposed at every point in the domain, individually.

Mathematically, it tells whether a constraint is a functional or a function.
◦ Global constraint is a functional
◦ Local constraint is a function. It can also be a differential equation.

It also has implications when we discretize.
◦ Upon discretization, a global constraint gives rise to only one constraint.
◦ A local constraint, on the other hand, gives as many constraints as the 

degrees of freedom.
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Examples of global and local constraints

Length of a curve
Area of a surface

Time of travel
Weight of a structure

Deflection at a particular point
Maximum stress

Buckling load
Natural frequency
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Upper or lower bound on a curve
Bounds on deflection of a 

structure
Bounds on stress

Governing differential equation
Bounds on the mode shape

Global constraints Local constraints

It is important 
to understand 
this difference.
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Local constraint!
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This problem statement 
means that we need to 
find y(x) that minimizes 
J and satisfies the 
equality g = 0

It is a local constraint because g applies to every point in the entire 
domain. It is a function. It has different values at different values of x.

Does this problem make sense? 
Think and then see the next slide.
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This problem does not make sense!
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g = 0 is already a 
differential equation. 
So, it, in its own 
right, has a solution 
for y(x). So, there is 
no room for 
minimizing another 
functional.
So, what do we do?
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This makes sense…
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This problem statement 
means that we need to 
find a pair of functions 
y(x) and z(x) that  
minimize J and satisfy 
the equality g = 0.

So, when we have a local constraint, there should be 
more than one function in the functional.
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How do we solve this?
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We follow almost the 
same procedure as with 
global constraints.
The slight difference 
will be in dealing with a 
local constraint rather 
than a global constraint.

Here also, we will have a Lagrange multiplier, but it will be 
function and not a scalar here.
The reason for this is simple: we have local constraint as a function 
(as opposed to a number), so its multilier is also a function.
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Equivalent of first-order term of a 
function integrated over the domain
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g is a function. Any change in it 
will cause change everywhere 
in the  domain from x1 and x2. 
So, we integrate to get the 
overall change.

Here, we have introduced variations in y 
and z, as we perturb from the optimum y*

and z*.

Here, we have introduced variations in y 
and z, only at specific points xa and xb
respectively.
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First-order term of the local constraint

10

Because the constraint 
should not change up to 
first order when we 
perturb the two 
functions.

Now, we have expressed the perturbation in function y at 
point in terms of the perturbation in z at another point. 
We need this because we want to substitute this in the first-
order term of the objective functional.  
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Perturbation of the objective functional at 
the same two points by the same amounts
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Eliminating one perturbation…
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First order change in objective functional
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This is zero because 
now it is first-order 
term due to one 
arbitrary feasible 
perturbation 
because the other 
one is eliminated.

because
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Defining a multiplier function…
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Since xa and xb are 
arbitrary, it means that 
this is true for any value 
of x.
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Putting things together…

15

Two differential 
equations as necessary 
conditions because we 
have two unknown 
functions, y(x) and z(x)
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Lagrangian can now be defined.
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N
ecessary conditons

Feasibility conditon



Structural Optimization: Size, Shape, and TopologyME 260 / G. K. Ananthasuresh, IISc

Why do we integrate g multiplied by the 
multiplier?
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Note that a local constraint is applicable at every point in the domain between x1
and x2.
So, when we discretize it, there will be as many constraints as there are 
discretization points. Then, each constraint will have a multiplier associated with 
it and the product of the multiplier and the constraint gets added to the 
Lagrangian. So, when we take a continuous (local) constraint, we need to 
integrate the product of the multiplier function and the constraint.

Understand 
this point 

well.
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Necessary conditions
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Unknowns

Two functions 

Two differential equations

Scalar function

Differential/algebraic equation

Equations
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General form
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A local constraint can be differential equation.
Both objective function and the constraint can depend on any 
number of derivatives of any order. All the generalities 
discussed earlier are applicable here also.
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What if we have an inequality constraint?
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We introduce complementarity condition and require 
non-negativity of the Lagrange multiplier…
just as we did in finite-variable optimization. The same 
argument applies here too.
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Chatterjee’s problem
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Here, we have a global equality 
constraint and a local inequality 
constraint. 

Observe how we write the 
Lagrangian.
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Necessary conditions for the Chatterjee’s problem
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Example 2: beam contact-problem
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= gap function
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Necessary conditions for the beam 
contact problem
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Physical interpretation of the Lagrange 
multiplier
Lagrange multipliers have physical meaning 
in most problems. Here, it represents the 
contact force.
Understand the complementarity in view of 
this: if gap is not zero (the contact has not 
taken place), hence the contact force (the 
multiplier) is zero. But when the gap is zero, 
the multiplier (and hence the contact force is 
not zero. 
And contact force is always non-negative!
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The end note
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Necessary conditions
Extension to inequality constraints

Necessary constraints for local constraints 
in calculus of variations

Distinguishing between  global and local constraints

First-order perturbation of a function 
Two perturbations to cancel the effects of each other to retain feasibility of
the equality constraint.

Concept of Lagrange multiplier and Lagrangian
Physical meaning of the Lagrange multiplier
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