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Outline of the lecture

Variable end conditions: motivating examples
General variation

Transversality conditions
Weierstrass-Erdman corner conditions

What we will learn:

Why we need to deal with variable end conditions in calculus of
variations

How to take general variation and how it affects only the boundary
conditions and not the differential equation

What broken extremals are

How we can get the regular boundary conditions as special cases



Modified brachistochrone problem

dy 2
ol 1| =
F Minimize 7 - \/ (dx) 7
y(x) o W)

Now, point B can be
anywhere on a given curve

represented by ¢ (x)

X
| N b,(x
8 We want to find y(x) such that
\ an object will reach any point
B

on ¢, (x)in the least time.

N

N\

Note that the change in the problem statement comes
only in the end condition and not in the functional.
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Another modification...
> Note ag.air; t?at the
¢1 (x — L ( afy] change in th

. problem statement
; comes only in the

Minimize T = I dx end conditions and
not in the functional.
y( x) " V(y)

Now, point A can be
anywhere on a given curve

represented by ¢ (x)

We want to find y(x) such that
an object will reach any point
< B on ¢,(x) starting from any
point on ¢ (x) in the least
time.
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A general problem with variable end conditions

%)
Min J = | F(y,)")dx
y(x)

X1
What do we do when ends are not given?
Recall that we had taken a variation (a perturbation) around a
minimal curve y“(x) and equated the first-order term to zero to
establish the necessary condition. Here, the perturbation should be
taken for y*(x) and the two ends.
“Variable ends” means that both ends can also be perturbed.
That is, the domain over which we integrate is variable.
In such a case, we take what is called a general variation in which
ends are also perturbed.
See the next slide...
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General non—contemgoraneous variation

(related to non-Contemporary)

y(x)=y (x) +h(x)

N

Now we have perturbed not only
the curve but also the ends!

( JC) This type of variation is called
y non-contemporaneous variation.

The term “non-contemporaneous”
must be in the context of time-related
Oo—e > X problems. We are shifting the x-axis.

O-@
xl x] T 5x1 x2 xz + 5x2 So, y and y* are not defined on the

same domain.

AJ = XZTXZF(V +hy" +h)dbx — jF(y V") dx
X1+0Xx
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First-order change with general variation

Xy +0 X,

AT= | FO +hy" +h)dx- jF(y,y )dx

xX1+0 Xy
j/ X2 r /ﬁ

We got both on the

_jF(y +h,y" + ) — jF(y V')A cams domain,

So, these two terms
x1+5 X1 Xp+0 Xy come out separated.

— | FO +hy +h)dx+ j FO +h,y" +h)dx

X1

~jF(y + R,y +h)dx — jF(y V' )dx —F|_8x, +F_ x,

X1

This is an approx1mat10n because the
perturbed domains are very small.
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Extensions of the domain at either end

A

0y, = h +y ox,
0y, = h, +y,0x,

yI’ = Slope at the first end

y; = Slope at the second end

i N

T h Differences between the
1 . .

s original and perturbed

O-@ O—e X h2 curves at either end

A = [F(' +hy" +1)dxc— | F(',y")dx — F|, 6x, +F|_5x,

The domains of the original curve and the perturbed curve need to be extended as shown
with blue lines by maintaining tangency to the respective curves.
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The first term of the first-order term...

TF(y* +h,y" +h)dx z]%F(y*,y'*)dx +T{Fyh+Fy.h’} dx

:TF(y*,y’*)dx +]‘2<(F

:TF(y*,y’*)dx +T<(F

o

. \>hdx+(Fy. h)

. \>hdx+(Fy. h) —(Foh)|

:

A result we had derived earlier.

f



And now...

A = [FG' +hy" +1)dc— | FO',y")dx — F_ 6x, +H_6x,
& |

By substituting for this from the preceding slide...

AJ zj{Fy —di(Fy.)}hdH(Fy. h) —(F,h) —(Fox) +(Féx)
% X Xy X X X
Fecall Oy, = I +y,0x, = Iy = 0y, — y, 0,

slide8: 0y, = h, +y,0x, = h, =0y, — Y, 0x,

=>AJ zj{p; _%(ﬁ;.)}hdﬁ(ﬁ;. 5y)

2

C{(F-Ey)ex
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Necessary condition and boundary
Conditions ve e finally. First order is equated to zero

for the necessary condition, as

usual.
A~ [{F-2(F) has-+(E,8y)" +{(F-F,y)ox| =0
- J | }
f !

X
2

By invoking the fundamental Boundary conditions
lemma, we get the differential
equation: X,
d (P; o y) =0 and
B = F)=0 ‘
dx , X2
{(F—F.y )5x} =0
Note that the Y 1
differential equation,
the Euler-Lagrange Note that the boundary condition of the fixed end
equation, did not conditions comes out neatly when the variation in the
change! end conditions are zero. Thatis, when §x = Sx. = ()
1 2
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boundary conditions when restricted to
g1ven curves

X
o ( (£, 5)
5y, = #{(x,)0x, = ¢, Ox,
0y, = @5(x,)0x, = ¢2' ox,

g

A =0

S {(F-Ey)ox]

X2
x1

k
k
k
b
“
J

y/ (F+F, (4- y'))ax}L =0

=0

X

\/ B {(F+Fy. (o, —y'))5x}

These are called transversality conditions.




Transversality conditions

=0

X

(F+ (8- )ox|

(F+F, @-y)ox]

=0

X9

J= [ foNTy? ac

= F=fo)N1+y"”

oOF [
0y’ \/l+y'2

:>F;,=

Transversality has something to
do with being orthogonal, i.e.,
perpendicular. It is indeed so for
certain functionals.

F+F.(¢'-y')=0

fy
1+y’2

0

:>f\/l+y’2+\/ ((o’—y’)
= f+y*)+ ¢’ — 7 =0

— f (1 + y ’¢') — O It means that the minimal

'L curve is orthogonal to the
=Yy ¢ =—1 boundary curve!
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Transversality and brachistochrone

g
TR /16 | |
A The optimal curve is
— perpendicular to the two
yi9, =-1 given curves at either end.
f AT
¢, =-1
Even though the
¢2 (x “transversality” is limited
only to special form of the
functional, the name stuck

for all types of functionals

B What is in a name,
™, anyway?
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Example: beam guided at one end
" 4,(x)

1 2 {(F+FW' (¢2’ _w’))5x} X =0
= EE] (W”) —4W  Dbecause
L(q But there isno F',.
Min J = j —EI (W")2 —gw dx term here. Sp, we
w(x) g 2 need to derive the
transversality

condition for w”
term.




Transversality condition for y" term

Resume from Slide 10 by including y” term.

,..,jF(y +hy" WY+ B dx — jF(y YY" )dx —Fl 8x, +F_ 5,

2

—I{ (1) (5 a5,

o}

+ (F 5x) K

X

!

From Slide 17 in Lecture 11

of this lecture

From Slide 10 h 5)}1 Y 5)(,‘1 hl' — 5y1' —
j ! ’
hz —5,)/’2 _yz 5x2 hz :5y2_

»ox,
V, 0X,
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Extended transversality conditions

\

A = V5B +(5,) e o (o)

T4 (ﬁ; —(F)]h ) +(F ox)” =0

1 Y 1

]| i )

By invoking the fundamental
lemma, we get the differential

equation:
F~(E,) +(E.) =

Note that the differential
equation, the Euler-
Lagrange equation, did not
change, once again!

It does not in all cases when
the end conditions change.
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0

|

Boundary conditions

(E, 5y'): )
{P; —(Fy,,)') 5y}x2 =0 and
~ x1

X

% '
<\\F—F;.y'+(ﬁ;,.) y' - y,,y"] 5x}xl

Note that the boundary condition of the fixed end
conditions comes out neatly when the variation in the
end conditions are zero. That is, when

=0
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Extended transversality conditions

(contd.)
¢1 (x {1:;. —(Fy)] 5y} )
Sy =@, Ox;; Sy =4, ox, <fCF—I';-y'+(Fy")'y'—P;..y") 5x}

. !’ . ' r )
oy, =@, 0x,; 0y, =@, OXx,

N
e
(

—— (FJ’" 5y')‘: =0

A =0 and

=0

x1

=0

1

\/ B {LF+[R _(F}' )'] (¢~ )+ E (4" _y")] 5x}j




Back to the guided beam...
" 4,(x)

AN

=0

{{FJF(Fy _(Fy')rJ (¢ =y)+E (8" —y")] 5x}x2

x1

El ") —4qW  because

% (v
aipooree P

1

{(EEI (w")’ —qw—(EmW") (¢, —y')+ Elw" (¢ - yn)] }| 0
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For two functions in one variable

Min J =

y(x),z(x)

Ditferential equations do not
change, as usual.
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With variable

end conditions

x, =9, (y,2)

X, =9, (,2)

Transversality conditions

y

zZ

F,

F,

N 0D, e (y, Z)(

Y
, Wror iy’Z)(
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F-yF,-z'F,)
F-y'F,~2F,)
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)

=()
|
X2

=()
X



Minimal curves need not be smooth!

A So far, we had assumed that
(xz ayz) minimum curves are smooth, i.e.,
y (x ) the slope of y is continuous. But
what if it is not?

(xc,yc) We get a kink or a sudden bend in
the curve.

(xl’y 1) X Such extremal curves are called
g broken extremals.

L They happen in problems where
Min J = (F(&,y' )dx something in the integrand of the
’ 0 function suddenly changes.

b L
I F.y)ds+ (B, )d In such a case, variable conditions
0 % equations come to rescue us.
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Broken extremal conditions

L
Min J = [(F(7,y')dx
y(x) )

= ](E(y, y')dx + _[ (F2 0, y')dx For the two parts... for one on the right side
0 %, and the other on the left side.
(P; 5y)‘xl =0 and ((ﬁ;,)l—(ﬁ;,)z)@;x =0 and
Xy = C
{(F — 1y )5"}L1 = {(F ~F,y') -(F —F}»J")z}&‘x =0
So...



Weierstrass-Erdmann corner conditions

=0 and

Xe

() —(F,),) 0y

=0

Xe

(F-Ey),-(F-Ey),|ox

So, whenever the intermediate point is variable...

F; and ( F— ]?; , y’ ) are continuous at the intermediate corner point.



Broken (non-smooth) extremals

Recall from Slide 3 of Lecture 2

This historically first calculus of variations
problem has a non-smooth extremum!

Which path
does the light
ray take then?

Air




Refraction of light; non-smooth solution

up 7=l

v(x)= speed of light ray changes at the

interface between the two media.

We do not know for what x value, the
bend takes place.

This is given by variable end
conditions. Let us see...




Intermediate variable end condition

¢ L
Cw S
Va,ir x, vglass

Now, for the two parts, x_is a
variable end condition!




Broken extremal conditions for a light ray

(£5-67)

X2
=(0 and
X1

2




Snell’s law from the corner condition

1 : :
F—-y'F, = is continuous at the corner. So, ...
w1+ y'2
1
— . 2 The first corner
Vi \/ 1+ ya”, glass \/ 1+ ygl s condition also

holds good

1 | here.
— > = Becausey
Vair \/l +tan Ha,- Volass \/ 1+ tan® leass is zefi).

cosd, COS leass sing . sin oiass ~ 1hus, we derived

. awr
= ; = — o Snell’s law using
air glass o air glass calculus of
=5 ! variations.
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The end note

Variable end conditions

General variation

Variable end conditions for first and second derivatives cases
Transversality conditions

Transversality conditions for the two-function case

General variation; transversality
conditions and broekn extremals

Broken extremals
Weierstrass-Erdmann corner conditions
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