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Outline of the lecture
Some problems in optimizing the cross-section profile of a beam under 
transverse loading.
What we will learn:
How to apply the concepts and ideas learned so far to solve problems in 
calculus of variations with particular examples of transversely loaded 
beams.
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How is a beam different from a bar?
(in the context of structural optimization)
A bar deforms axially whereas a beam displaces transversely. That is, a beam bends. 
The governing differential equation for a bar is of second order whereas that for a 
beam is fourth order. So, we should be prepared for tedious calculations in a beam.

Cross-section area is all that matters for volume and stiffness in a slender bar: its shape 
does not matter. That is not true for a beam. The volume of a beam depends on the 
value of cross-section area but the stiffness depends on the second moment of area of 
cross-section. So, shape of the cross-section matters.

In this set of problems, we consider only rectangular cross-section of beams. A 
rectangular has two dimensions, breadth, b(x), and depth, t(x). Both of these can be 
varied independently (provided that such a beam can be manufactured economically). 
However, most often, we vary only one of them.

If is b(x)varied,  

If is t(x)varied,

For most cross-section shapes, we can write: 
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Problem 1
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We assume here that only b(x) is variable.
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Minimize the mean compliance 
of a beam for given volume of 
material.
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Problem 2
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Minimize the strain energy of a 
beam for given volume of 
material.
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Problem 3
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Minimize the volume of a beam 
subject to an upper bound on 
the strain energy.
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Problem 4
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Minimize the volume of material 
for a given upper bound on the 
mean compliance.
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Problem 5
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Minimize the strain energy of a 
statically determinate beam for 
given volume of material. For a 
statically determinate beam, we 
can obtain the bending moment 
without knowing the area of 
cross-section of the beam.
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Problem 6
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Min-max formulation for the 
stiffest beam for given volume of 
material.
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Problem 7
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Minimize the mean compliance 
of a beam for given volume of 
material with the governing 
equation in the weak form.
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Problem 8
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Minimize the mean compliance 
of a beam for given volume of 
material and upper and lower 
bound constraints on the area of 
cross-section.
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Problem 9
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Minimize the mean compliance 
of a beam for given volume of 
material where the depth of the 
beam is the design variable.
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Problem 10
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Minimize the volume of a 
statically determinate beam with 
a deflection constraint in its 
span.
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Problem 11
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Minimize the volume of material 
of a beam (statically determinate 
or indeterminate) for a 
deflection constraint in its span.
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Problem 12
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Minimize the volume of material 
of a beam (statically determinate 
or indeterminate) for a 
deflection constraint in its span 
with an upper bound on the 
strain energy.
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Problem 13
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Minimize the mean compliance 
of a beam for given volume of 
material and upper and lower 
bound constraints on the 
transverse displacement. 
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Problem 14
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Minimize the mean compliance 
of a beam for given volume of 
material and upper and lower 
bound constraints on the stress. 
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Problem 15
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Determine the worst load 
distribution of a beam. Note that 
the upper bound on the overall 
load is specified.
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Problem 16
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A general objective function for 
a beam problem.
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Problem 17
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Minimize the mean compliance 
of a beam for given volume of 
material by varying both 
breadth and depth of the 
rectangular cross-section of the 
beam.
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The end note
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Constraints on displacements and strains (stresses) can be 
imposed.

Transversely deforming beam is the second simplest structural optimization 
problem. Either breadth or depth can be varied; both can be varied too.

Mean compliance and strain energy are measures of stiffness.
Volume of material used is a cost-measure.
Objective function and functional constraint can be interchanged without 
affecting the nature of the solution.

Constraints can also be imposed on profile of the area of 
cross-section.

Equilibrium equation can be posed in strong or weak form without 
changing the nature of the solution.
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