

Lecture 18a

Many problems in optimizing a beam

ME 260 at the Indian Institute of Science, Bengaluru

Structural Optimization: Size, Shape, and Topology

G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bangalore

suresh@iisc.ac.in

Outline of the lecture

Some problems in optimizing the cross-section profile of a beam under transverse loading.

What we will learn:

How to apply the concepts and ideas learned so far to solve problems in calculus of variations with particular examples of transversely loaded beams.

How is a beam different from a bar? (in the context of structural optimization)

A bar deforms axially whereas a beam displaces transversely. That is, a beam bends. The governing differential equation for a bar is of second order whereas that for a beam is fourth order. So, we should be prepared for tedious calculations in a beam.

Cross-section area is all that matters for volume and stiffness in a slender bar: its shape does not matter. That is not true for a beam. The volume of a beam depends on the value of cross-section area but the stiffness depends on the second moment of area of cross-section. So, shape of the cross-section matters.

In this set of problems, we consider only rectangular cross-section of beams. A rectangular has two dimensions, breadth, $b(x)$, and depth, $t(x)$. Both of these can be varied independently (provided that such a beam can be manufactured economically). However, most often, we vary only one of them.

If is $b(x)$ varied, $A(x) = b(x)t$; $I(x) = b(x)t^3 / 12 = b(x)t(t^2 / 12) = (t^2 / 12)A(x)$

If is $t(x)$ varied, $A(x) = b t(x)$; $I(x) = b t(x)^3 / 12 = (b t(x))^3 / (12b^2) = (1 / 12b^2)A^3(x)$

For most cross-section shapes, we can write: $I(x) = \alpha A^\beta$

Problem 1

Minimize the mean compliance
of a beam for given volume of
material.

$$\underset{A(x)}{\text{Min}} \ MC = \int_0^L q w dx$$

Subject to

$$\lambda(x): \quad (EIw'')'' - q = 0 \Rightarrow (E\alpha Aw'')'' - q = 0$$

$$\Lambda: \quad \int_0^L A dx - V^* \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = t^2/12, V^*$$

We assume here that only $b(x)$ is variable.

$$I(x) = \alpha A^\beta$$
$$\alpha = \left(\frac{t^2}{12} \right); \beta = 1$$

Problem 2

Minimize the strain energy of a beam for given volume of material.

$$\underset{A(x)}{\text{Min}} \ SE = \int_0^L \frac{1}{2} E \alpha A w''^2 dx$$

Subject to

$$\lambda(x): \quad (E \alpha A w'')'' - q = 0$$

$$\Lambda: \quad \int_0^L A dx - V^* \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = t^2/12, V^*$$

Problem 3

Minimize the volume of a beam subject to an upper bound on the strain energy.

$$\underset{A(x)}{\text{Min}} \ V = \int_0^L A dx$$

Subject to

$$\lambda(x): \quad (E\alpha Aw'')'' - q = 0$$

$$\Lambda: \quad \int_0^L \frac{1}{2} E\alpha Aw''^2 dx - SE^* \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = t^2/12, SE^*$$

Problem 4

Minimize the volume of material for a given upper bound on the mean compliance.

$$\underset{A(x)}{\text{Min}} \ V = \int_0^L A dx$$

Subject to

$$\lambda(x): \quad (E\alpha Aw'')'' - q = 0$$

$$\Lambda: \quad \int_0^L q w dx - MC^* \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = t^2/12, MC^*$$

Problem 5

$$\underset{A(x)}{\text{Min}} \ SE = \int_0^L \frac{M^2}{2E\alpha A} dx$$

Subject to

$$\Lambda : \int_0^L A dx - V^* \leq 0$$

$$\text{Data: } L, M(x), E, \alpha = t^2/12, V^*$$

Minimize the strain energy of a statically determinate beam for given volume of material. For a statically determinate beam, we can obtain the bending moment without knowing the area of cross-section of the beam.

Problem 6

Min-max formulation for the stiffest beam for given volume of material.

$$\underset{A(x)}{\text{Max}} \underset{u(x)}{\text{Min}} \text{PE} = \int_0^L \left(\frac{1}{2} E \alpha A w''^2 - q w \right) dx$$

Subject to

$$\Lambda: \int_0^L A dx - V^* \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = t^2/12, V^*$$

Problem 7

$$\underset{A(x)}{\text{Min}} \ MC = \int_0^L q w dx$$

Minimize the mean compliance of a beam for given volume of material with the governing equation in the weak form.

Subject to

$$\Gamma : \int_0^L (E\alpha A w'' v'' - qv) dx = 0$$

$$\Lambda : \int_0^L A dx - V^* \leq 0$$

$$\text{Data : } L, q(x), E, \alpha = t^2/12, V^*$$

Problem 8

$$\underset{A(x)}{\text{Min}} \ MC = \int_0^L q w dx$$

Minimize the mean compliance of a beam for given volume of material and upper and lower bound constraints on the area of cross-section.

Subject to

$$\Gamma: \int_0^L (E\alpha A w'' v'' - qv) dx = 0$$

$$\Lambda: \int_0^L A dx - V^* \leq 0$$

$$\mu_u(x): A - A_u \leq 0$$

$$\mu_l(x): A_l - A \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = t^2/12, V^*, A_l, A_u$$

Problem 9

Minimize the mean compliance of a beam for given volume of material where the depth of the beam is the design variable.

$$\underset{A(x)}{\text{Min}} \ MC = \int_0^L q w dx$$

Subject to

$$\Gamma: \int_0^L (E\alpha A^3 w'' v'' - qv) dx = 0$$

$$\Lambda: \int_0^L A dx - V^* \leq 0$$

$$\mu_u(x): A - A_u \leq 0$$

$$\mu_l(x): A_l - A \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = \frac{1}{12b^2}, V^*, A_l, A_u$$

We assume here that only $t(x)$ is variable.

$$I(x) = \alpha A^\beta$$

$$\alpha = \left(\frac{1}{12b^2} \right); \beta = 3$$

Problem 10

Minimize the volume of a statically determinate beam with a deflection constraint in its span.

$$\underset{A(x)}{\text{Min}} \ V = \int_0^L A dx$$

Subject to

$$\Lambda : \int_0^L \frac{MM_d}{E\alpha A} dx - \Delta^* = 0$$

$$\text{Data : } L, M(x), M_d(x), E, \alpha = t^2/12, \Delta^*$$

Problem 11

Minimize the volume of material of a beam (statically determinate or indeterminate) for a deflection constraint in its span.

$$\underset{A(x)}{\text{Min}} \ V = \int_0^L A dx$$

Subject to

$$\lambda(x): \quad (E\alpha Aw'')'' - q = 0$$

$$\lambda_d(x): \quad (E\alpha Av'')'' - q_d = 0$$

$$\Lambda: \quad \int_0^L E\alpha Aw''v'' dx - \Delta^* = 0$$

$$\text{Data: } L, q(x), q_d(x), E, \alpha = t^2/12, \Delta^*$$

Problem 12

$$\underset{A(x)}{\text{Min}} V = \int_0^L A dx$$

Subject to

$$\lambda(x): (E\alpha Aw'')'' - q = 0$$

$$\lambda_d(x): (E\alpha Av'')'' - q_d = 0$$

$$\Lambda: \int_0^L E\alpha Aw''v'' dx - \Delta^* = 0$$

$$\Gamma: \int_0^L \frac{1}{2} E\alpha Aw''^2 dx - SE^* = 0$$

$$Data: L, q(x), q_d(x), \alpha = t^2/12, E, \Delta^*, SE^*$$

Minimize the volume of material of a beam (statically determinate or indeterminate) for a deflection constraint in its span with an upper bound on the strain energy.

Problem 13

$$\underset{A(x)}{\text{Min}} \ MC = \int_0^L q w dx$$

Minimize the mean compliance of a beam for given volume of material and upper and lower bound constraints on the transverse displacement.

Subject to

$$\Gamma: \int_0^L (E\alpha A w'' v'' - qv) dx = 0$$

$$\Lambda: \int_0^L A dx - V^* \leq 0$$

$$\mu_u(x): w - w_u \leq 0$$

$$\mu_l(x): w_l - w \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = t^2/12, V^*, w_l, w_u$$

Problem 14

$$\underset{A(x)}{\text{Min}} \ MC = \int_0^L q w dx$$

Minimize the mean compliance of a beam for given volume of material and upper and lower bound constraints on the stress.

Subject to

$$\Gamma: \int_0^L (E\alpha A w'' v'' - qv) dx = 0$$

$$\Lambda: \int_0^L A dx - V^* \leq 0$$

$$\mu_u(x): E\alpha w'' - \sigma_t \leq 0$$

$$\mu_l(x): \sigma_c - E\alpha w'' \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = t^2/12, V^*, \sigma_t, \sigma_c$$

Problem 15

$$\underset{q(x)}{\text{Max}} \ MC = \int_0^L q w dx$$

Subject to

$$\lambda(x): \quad (E\alpha Aw'')'' - q = 0$$

$$\Lambda: \quad \int_0^L q dx - W^* \leq 0$$

$$\text{Data: } L, A(x), E, \alpha = t^2/12, W^*$$

Determine the worst load distribution of a beam. Note that the upper bound on the overall load is specified.

Problem 16

A general objective function for a beam problem.

$$\underset{A(x)}{\text{Min}} \ MC = \int_0^L q w^2 dx$$

Subject to

$$\lambda(x): \quad (E\alpha A w'')'' - q = 0$$

$$\Lambda: \quad \int_0^L A dx - V^* \leq 0$$

$$\text{Data: } L, q(x), E, \alpha = t^2/12, V^*$$

Problem 17

$$\underset{b(x), t(x)}{\text{Min}} \quad MC = \int_0^L q w dx$$

Subject to

$$\lambda(x): \quad \left(\frac{1}{12} E b t^3 A w'' \right)'' - q = 0$$

$$\Lambda: \quad \int_0^L A dx - V^* \leq 0$$

Data : $L, q(x), E, V^$*

Minimize the mean compliance of a beam for given volume of material by varying both breadth and depth of the rectangular cross-section of the beam.

The end note

- Transversely deforming beam is the second simplest structural optimization problem. Either breadth or depth can be varied; both can be varied too.
- Mean compliance and strain energy are measures of stiffness.
- Volume of material used is a cost-measure.
- Objective function and functional constraint can be interchanged without affecting the nature of the solution.
- Equilibrium equation can be posed in strong or weak form without changing the nature of the solution.
- Constraints can also be imposed on profile of the area of cross-section.
- Constraints on displacements and strains (stresses) can be imposed.

Thanks