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Outline of the lecture

Solving two problems concerning size optimization of beams for
stiffness and flexibility with volume constraint.

What we will learn;

How to apply the eight steps we had used for bars to the case of beams.




P bl 1 Minimize the mean compliance
ropieim of a beam for given volume of
L material.
Min MC = J-q wdx
0

A(x)
Subject to
A(x): (EIw”)” —q :0:>(EaAw”)” —qg=0

L
A j Adx—V" <0

0

2 *

Data: L,q(x),E,a = %2 V We assume here that only b(x) is variable.

I(x)=ad’




Steps in the solution procedure
Step 1: Write the Lagrangian

Step 2: Take variation of the Lagrangian w.r.t. the design variable and
equate to zero to get the design equation.

Step 3: Take variation of the Lagrangian w.r.t. state variable(s) and
equate to zero to get the adjoint equation(s).

Step 4: Collect all the equations, including the governing equation(s),
complementarity condition(s), resource constraints, etc.

Step 5: Obtain the optimality criterion by substituting adjoint and
equilibrium equations into the design equation, when it is possible.

Step 6: Identity all boundary conditions.
Step 7: Solve the equations analytically as much as possible.

Step 8: Use the optimality criteria method to solve the equations

numericalli.



S 1 t Minimize the mean compliance
o1uton of a beam for given volume of
I material.
Min MC = | gwdx
A(x) -(‘)-q
Subject to
Ax): (EW') —g=0=(Eadw") —q=0
L
A j Adx—V"* <0
0

Data: L,q(x),E,a =t712,V*

L
Step1 L= j {qw+ ﬂ((EaAw”)" —q)+AA}dx—AV*
0



Expand the Lagrangian

Stepl L= J‘<qw+l((EaAw”) —q)+AA>dx AV

L( \
L:j<qw+l((EaAw”)” —q)+AA>dx—AV*
0" ’

— {qw+Ea/1(A'w"+Aw"') —/1q+AA}dx—AV*




Design equation
Step2 L= j‘{qw + EQAA"W' + 2EQAA'W" + EQAAW"" — Aq + AA}dx — AV’

F=qgw+ EaAA"W" + 2EQAA'W" + EaAAW"" — Aq + AA4

5,L=0=2 (L) [N g
o4 \oa) \ad"

= A+Eainw"" — (2E axlw’”), + (E a/”tw")” =0
= A+ Eain"" — (2Ea/1w”’)' + (Ea ’w”)' + (Eaxlw”’)' =0

= A+ Eaaw" —(Eaiw™) +(Ead'w") =0
= A+ Eadw"" —(Ead'w") = (Ecadw" )+ (Ead"w") +(EaA'w") =0
= A+(EaA"w")=0



Adjoint equation
Step 3 F=gw+ EalA"W' + 2EaAA'W" + EaAAW"" — Aq + AA

5 10 OF (OFY (OFY (oF Y (oF Y _,
aw awl awﬂ awm awﬂﬂ

nn

0) +(Eard") —(2Eald) +(Eaid) =0

Ea/IA")” — (2Ea/1A')m + (EOM’A)”’ + (EaxlA')m =0

—(Eaad')" +(Eal'4) =0

A4")
= g+(Eadd") —(Ead' A') —(Eaid") +(Eal"4) +(Ead'A") =0
) =0




Collect all equations

Unknowns A(x),w(x),A(x),A We have three differential

Step 4 Three functions and one scalar variable. equat%ons and one scalar
equation.
Design equation A (Ea v ) =0 ) Step 5
Adjoint equation q+ (E al” A)” =0 A > Eaw™ = A
> A=-w -/  Strain energy
Governing equation ( Eo AW”)" —q=0 density is
- uniform
L . throughout the
Feasibility condition j Adx—-V <0 beam.
0
And, A cannot be
Complementarity L . zZero.
condition A| [Ade-v" |=0,A20
0 So, the volume

constraint is active.



Identity all boundary conditions

Step 6 Boundary conditions for A(x)

F=qgw+ EalA"W' + 2EaAA'W" + EaAAW"" — Aq + AA

L m " !
0 } {ZEOMW —(Eaiw") }5/1

L

=0

(FA, ~(F,) j SA

and

KFA,,(SA’

(Eaiw" 6 4

0

= {EaAw" — Eal'w"} 4], =0

0

(L) —0 = {—Eaww" + Eaw'w"} 5A‘§ =0 since A =-w

/

L:O
0

— {—anw"} OA

" 0= {Eaww"} 54| =0
0 0




Identity all boundary conditions

Step 6 Boundary conditions for (x)

F=qgw+ EaAA"W" + 2EQAA'W" + EaAAW"" — Aq + AA4
L

(pw, C(E) +(E.) (. )’”j(sw 0

0

L

(Fw,, ~(E,.) +(F,..) j sw'| =0

0




Identity all boundary conditions

Step 6 Boundary conditions for A(x)
F=gw+ EalA"W + 2EQAA'W" + EaAAW"" — Aqg + AA

b L
(F —(Pw,,,,) j&w —C}{—(EOMA”)’+(2E(MA’) (EOMA) }5w — ()
0 0
rL , " L
(P )&U ) =0 }{EOMA”—@EO{/IA') +(EalA) }5w’ =0
0
L
(F j&“" =0 } {2EaM' (EaﬂA)'}dw” -0
0
Fw ”’0
N J
Yo

(EaAd)sw"|) =0




Simplify 1 adjoint boundary condition

{—(EOMA”)'+(2E0MA) —(Eard) }5W =0

0
L

= —(Eadd") +(2Eald’) (EaxlA’)”—(Eal’A)”}5w =0

0
L

=~ (Eaid") +(Eald') (Eaxl’A)”}5w =0

0
L

=0

0

L L

—{(Eal’ A —(Eat A) }5w =0

~0= {(Ea/I’A’)' (Ean' A _(an)’}aw

0 0

A
A
:>{ (Eadd") +(Eaid") (Ea/I’A’)'—(Ea/I’A)”}5w
{
A

— Ea/lA }§w —O:>(EOM”A'+Ea/’t’”/1 5w‘ =0




Simplify 2nd-4th adjoint boundary
conditions
{E(MA” ~(2Eard’) +(Eard) }5w'

L

=0

0
L

= {EOMA” ~(2EaAd’) +(Eadd') +(Eal' ) }5w’ =0

0
L

— {EOMA” — (EOMA')' + (Eaﬂ'A)’ }5w’ =0

0
L

- {—(Ewl’A’)+(Eal’A)'}5w’ 0= (Ear"d)sw]' =0

0
L

{ZEa/IA’ — (EOMA)' }5w" =0= (Eald - Ea/I'A)5w”‘§ =0

0

(Eard)sw"| =0



All four adjoint boundary conditions

ow=0w =0 ow=w"=0
Fixed flgj_ned
9_
(Ead"d'+ EaA" A)sw| =0 No BC for A(x) No BC for A(x)
(Eai"4)5w|, =0 No BC for A(x) A"A=0
(Eard' ~ Ea' A)sw'|, =0 AA ~2A=0 No BC for A(x)
(EaAd)sw"|) =0 A4=0 A4=0

Notice that BCs of the state variable transfer to adjoint variable (most often).
But be sure to keep the BCs on the design variable in mind.



All four adjoint boundary conditions

Transversely w'=w"=0
guided Free
5W' —w" =0 EE]_ —
(Ead"d'+ EaA" A)sw| =0 A +A"A=0 A4+ A"A=0
(Ear"4)sw] =0 No BC for A(x) A"4=0
(Eard' ~ Ea' A)sw'|, =0 AA ~2A=0 No BC for A(x)
4 L

(Ea/’tA)é‘w )= 0 No BC for A(x) No BC for A(x)

Notice that BCs of the state variable transfer to adjoint variable (most often).
But be sure to keep the BCs on the design variable in mind.



Solving for a particular beam BCs

Transversely
Step 7  TFixed q(x)=gq, guided
w:w’:o 2 W’:W’”:O
AAd=0 & AA'-A1'A=0 A"A+2A"4=0 & 24'-1"4=0
Take 1=1"=0 Take A\"=1"=4"=0
L '
{(Eaww'} 54| =0 & {~Eaww"+Eaw'w"}54| =0
Satisfied at x =0 Satisfied at x =0 ,—
and x =L and x =L
Eaw" = A )
N (FAVEaA) =q,=> A== +Cx+C
— W” — + A ( ) 0 /

E(i >

Solve for A using jAdx— V<0
0




Reconciliation of BCs for Alx)

% qoL

“2JEah VEah

We can use the active volume constraint to solve for A

Step 7  From the previous slide, we have 4 =

3 3
qOL qOL *
=+ +C, L=V
6VEah 2JEah "
3
e 9L S 2q,L
= EaA =— " 0 for + sign & Eaol\ =— *qo for - sign
3(r"-C,L) 3(V -CoL)
3x° (V* — COL) 3(V* - COL) How do we choose
— ¥ - 2 x+C the two possibilities
A(x) =1 L . (+or -) and
3 (V' =GL) 3(V' -C,L) determine C,?
5 — . x+C,
\ 4L 2L



Validating with the numerical solution...

r =_3x2(V ~Gt) 3(” _COL)X+C @e We need to see which part of the
A(x) =+ *2L3 \ r 0 domain should have the “+ curve”
e 35 (V' -CoL) B 3(V -Gl e @e and which part should have “-
41} 21 " curve”.
A

L=20;d =1,V =50,E=210;4. =1E-34_ =10;q, =1 A(X)

% “ "max

Amax=10 Amin=0 for boundary conditionfixed-guided,uniform load

6 CO A

e A(x)

0 > X

ol - We need to find x and C,

uSing A+ (_),(\j) = A4 (),(\j) — O




Pr()blem 12 Minimize the volume of material

of a beam (statically determinate

L or indeterminate) for a
%ii)fz V=|Adx deflection constraint in its span
0 with an upper bound on the
Subject to strain energy.

A(x): (EaAw”)” —qg=0

(@) (Eadv") —q,=0

L
A anAw”v” dx—A =0
0

I: EaAw" dx—SE =0

=R s 1

1
2

Data: L,q(x),q, (x),a=t712,E,A*,SE*




The end note

——— We follow essentially the same eight steps

—— Identitying the optimality criterion is the highlight.

~___ Boundary conditions for the adjoint variable need to be carefully done.
See the correlation between BCs and optimal profiles

Analytical solution may be segmented with multiple
possibilities because of + and — of constant strain.

Size optimization of beams

Iterative numerical solution, when it is needed, remains
the same.
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