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Outline of the lecture

Posing and solving the topology optimization of 2D frames in which
design variables are cross-section dimensions of beam elements.

Maximizing stiffness for given volume.
What we will learn:

How to apply the six steps to identify the optimality criterion and use it
in the numerical method.

How to ensure that we get a realistic solution when non-intuitive
displacement is desired for given applied force.
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PrOblem Minimize strain energy of a frame for given volume of material.

|
Min SE = —u’' Ku A frame

2 .

with
Subject to beam
2 - Ku—f =0 elements
A: 'a—V" <0
Data:K(,b,d,E),Lf.V",d
n Number of nodes

Each node has three DoF: x and y
displacements and rotation aout the z-axis.
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Global stiffness matrix
before applying

3nx3n »
boundary conditions
Complete state variable
u3nx1 vector of DoF, three per

node
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We assume here that only b
b d 3 (breadth) of beam elements
in the frame is variable with
12 d (depth) held constant and
the same for all beam
elements.

b, - bN}

Design variables have lower and
upper bounds

bmin < b ] < bmax



How optimized topology comes about...

bT:{bl b, - b - bN}

l

Design variables have lower and
upper bounds

b. <b<bh

/\mm If optimized values of “b”s reach the lower bound

(which is nearly zero), then the corresponding
beams elements “disappear” in the design leaving
the optimized topology.

We make the lower bound small enough
to not cause the stiffness matrix singular
(if one or more elements get that value
during optimization) but make it as
small as possible so that those elements
do not contribute to stiffness.

Optimized topology of the frame /

wherein many elements (thin lines)
have reached the lower bound on b. —)
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Steps in the solution procedure
Step 1: Write the Lagrangian

Step 2: Take derivative of the Lagrangian w.r.t. the design variable and
equate to zero to get the design equation.

Step 3: re-arrange the terms in the design equation to avoid computing
the derivative of the state variables and thereby get the adjoint
equation(s).

Step 4: Collect all the equations, including the governing equation(s),
complementarity condition(s), resource constraints, etc.

Step 5: Obtain the optimality criterion by substituting adjoint and
equilibrium equations into the design equation, when it is possible.

Step 6: Use the optimality criteria method to solve the equations
numerically.



Solution
1

Min SE = —u' Ku
b 2

Subject to

A Ku-1f=0

A: 'a—7" <0
Data: K(,b,d, E), L,V ,d

Step1  Writing the Lagrangian
L =%uTKu+)»T (Ku—f)+A( 1Ta—V*)



Design equation

Step 2 Taking the derivative of the Lagrangian w.r.t. to the design variable
1 =0 if loads are

L——uTKu+xT(Ku—f)+A(1Ta_V*) not

5 dependent on
the design
variables

oL _1 TﬁKu+u Ka—u+)»T 8—Ku+K—— +A(1)=0

ob, 2 ob, ob, ob, - -

Design equation

Step 3 Re-arrange the design equation to separate out sensivities of state

variables.
luTEa—Ku+(uTK+)»TK)au kTa—Ku+A(l):O
2 ob b, b,

_
ou

Equate this to zero vector to avoid computing ——




Adjoint equation and all equations
Step3  Adjoint equation

(u'K+21"K)=0
Step4  Collect all equations

1 0K oK
Design equation —llT —Uu + )\.T

2 ob, ob

Adjoint equation (llTK + )\.TK) =0=>A=—u

u+A(7)=0

Feasibility equation ]T qQ— V* <0

Complementarity

condition A(lTa — V*) =0; A=0



Optimality criterion
Step 5 Substitute the solution to the adjoint variable into the design equation.

1 0K r OK

Optimality criterion

—u —u+A —u+A(L)=0
2 0D ob, ( ) 1 ;0K
—u —u=A
T T 2. 0b,
uK+Aa K):0:>k=—u
\ N J Since aKl = Ki
ob. b
lllTa—I<ll llT aKll-I—A(l):O lul.TKl.ul. A
2 0D ob, 2 _
— 1 uT oK —u=A So, the strain energy density is

21 ab constant for all beam elements.




Numerical solution

Step 6  Use the optimality criteria method to find “b”s in outer and inner loops.

Initial guess for b, A

Update p*V = u K,
2AL
T

Check if b; has exceeded ® U Ko, =1 or b,=b_ orb_.
bounds and equate to the 3 % 2ALb,
bounds if they did. = ~ k|| What we need to achieve for
Update A until b, g _é all elements, j =1,2,---, N
does not exceed bounds
anymore.

k=k+1

Continue until b**" =p™®




The end note

Observe how we used size optimization of individual beam elements in a
“super structure” to give the topology of the frame.

We follow six steps to solve the discretized (or finite-variable optimization)
problem.

Identity the optimality criterion.

Interpret the optimality criterion.

Iterative numerical solution, when it is needed, remains
the same.

Topology optimization of frames for stitfness
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