

Lecture 19b

Size optimization of beams for strength

ME 260 at the Indian Institute of Science, Bengaluru

Structural Optimization: Size, Shape, and Topology

G. K. Ananthasuresh

Professor, Mechanical Engineering, Indian Institute of Science, Bangalore

suresh@iisc.ac.in

Outline of the lecture

Posing and solving the topology optimization of 2D frames in which design variables are cross-section dimensions of beam elements.

Considering stiffness and flexibility together.

What we will learn:

How to apply the six steps to identify the optimality criterion and use it in the numerical method.

How to ensure that we get a realistic solution when non-intuitive displacement is desired for given applied force.

Problem S1

Minimize the volume of material of a beam subject to strength constraints.

$$\underset{A(x)}{\text{Min}} V = \int_0^L A dx$$

Subject to

$$\mu_t(x): \quad E\left(\frac{d}{2}\right)w'' - S_t \leq 0$$

$$\mu_c(x): \quad S_c - E\left(\frac{d}{2}\right)w'' \leq 0$$

$$\lambda(x): \quad (E\alpha Aw'')'' - q = 0$$

$$\text{Data: } L, q(x), \alpha = t^2/12, E, S_t, S_c$$

Problem S2

Minimize the maximum stress subject to a volume constraint.

$$\underset{A(x)}{\text{Min}} \underset{x}{\text{Max}} \sigma = E \frac{d}{2} w''$$

Subject to

$$\Lambda: \int_0^L A dx - V^* \leq 0$$

$$\lambda(x): (E\alpha A w'')'' - q = 0$$

$$\text{Data: } L, q(x), \alpha = t^2/12, E, V^*$$

Do you see a problem here?

How do you take variation of a functional that is maximum of a function?

Maximum of a function over the spatial domain is indeed a functional. But how do you take the variation?

We use a trick here. See next...

Problem S2

Minimize the maximum stress subject to a volume constraint.

Two equivalent formulations
(The latter is the trick!)

$$\underset{A(x)}{\text{Min}} \underset{x}{\text{Max}} \sigma = E \frac{d}{2} w''$$

Subject to

$$\Lambda: \int_0^L A dx - V^* \leq 0$$

$$\lambda(x): (E\alpha Aw'')'' - q = 0$$

$$\text{Data: } L, q(x), \alpha = t^2/12, E, V^*$$

$$\underset{A(x), \beta}{\text{Min}} \beta$$

Subject to

$$\mu(x): E \frac{d}{2} w'' - \beta \leq 0$$

$$\Lambda: \int_0^L A dx - V^* \leq 0$$

$$\lambda(x): (E\alpha Aw'')'' - q = 0$$

$$\text{Data: } L, q(x), \alpha = t^2/12, E, V^*$$

The end note

Size optimization of beams for

- Observe how we used the beta-formulation for handling mix-max problems
- We follow six steps to solve the discretized (or finite-variable optimization) problem.
- Identify the optimality criterion.
- Interpret the optimality criterion.
- Iterative numerical solution, when it is needed, remains the same.

Thanks