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Outline of the lecture
Posing and solving the topology optimization of 2D frames in which 
design variables are cross-section dimensions of beam elements.
Considering stiffness and flexibility together.
What we will learn:
How to apply the six steps to identify the optimality criterion and use it 
in the numerical method.
How to ensure that we get a realistic solution when non-intuitive 
displacement is desired for given applied force.
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Minimize the volume of material of a beam 
subject to strength constraints.
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Problem S2
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Minimize the maximum stress subject to a 
volume constraint.

Do you see a problem here?

How do you take variation of a 
functional that is maximum of 
a function?

Maximum of a function over 
the spatial domain is indeed a 
functional. But how do you 
take the variation?

We use a trick here. See next…
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Problem S2
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Minimize the maximum stress subject to a 
volume constraint.
Two equivalent formulations 
(The latter is the trick!)
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The end note
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Iterative numerical solution, when it is needed, remains 
the same.

We follow six steps to solve the discretized (or finite-variable optimization) 
problem.

Observe how we used the beta-formulation for handling mix-max 
problems

Identify the optimality criterion.

Interpret the optimality criterion.
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