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Outline of the lecture

Feasible perturbations

Second-order term in the Taylor series of an n-variable function
Sufficient conditions for constrained minimization

Bordered Hessian

What we will learn:

How to interpret feasible perturbations around a constrained local
minimum

Positive definiteness of the Hessian is an overkill

How to check positive definiteness of the Hessian over the feasible
perturbations

Significance of the bordered Hessian



Re-cap of KKT conditions

Min f(x)

Subject to
h(x)=0
g(x)<0

The first of KKT conditions says that the gradient of the objective function is a
linear combination of the gradients of the equality and active inequality
constraints.

V f(x)+V hxHA +V gxHp' =0
h(x)=0; gk(x*)SO
‘le gk(x*):()a :uk 209 k= 1,2,”'9]7

Lagrange multipliers of inequality constraints cannot be negative; those of
equality constraints can be of any sign.

Complementarity conditions (the third line) help decide if a constraint is active or
inactive.
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What if we maximize?

Max f(x)
) V. f(x)+V.h&EHL +V gxHu’ =0
o T T
x )=0; X )<
h(x)=0 (x") gok <0; k=12
X — ; - ; — b 9...9

Notice the change in the sign of the Lagrange multipliers.

Now they need to be non-positive; that is, they cannot be positive.
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What if we flip the inequality sign?

Min f(x)
’ V. f(x)+V.hEHA +V.gxHu” =0
Subject to h(XJ:§X )0+ X((f)>> o+ Z(x p
X )=V, X )=
h(x)=0 oS
1, g (X)=0; g1, <0; k=12, p
g(x)>0

Notice the change in the sign of the Lagrange multipliers.

Now they need to be non-positive; that is, they cannot be positive.
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What if we maximize and flip the
inequality sign?

Max f(x)
’ V. f(x)+V.hEHA +V.gxHu” =0
Subject to h(XJ:§X )0+ X((f)>> o+ Z(x p
X )=V, X )=
h(x)=0 oS
1, g (X)=0; 11, 20; k=12, p
g(x)>0

Notice the sign of the Lagrange multipliers.

Now they need to be non-negative again.
Two negatives annul each other’s effect.
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Feasible perturbations; constrained
subspace

For sufficient conditions, we need to consider only the feasible
perturbations.

Consider m equality constraints plus active inequality
constraints such that they are linearly independent.

Together, they represent a “hyper surface” of
dimension (n-m).

Sz{x*eR”

h(x')= O}

We need to verity sufficiency by taking perturbations only in S, which is called the
constrained subspace.
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First order term of f(X) 1n the constrained

SUbSpace Recall from Slide 14 in Lecture 3

V.'AX =V _fT(x)As +V, T (x)Ad

— {—Vs S| V.’ (x"‘)]‘1 V,h' (x)+V, fT (x*)} Ad’

where  As"=—[Vh'(x")| V,h'(x)Ad

After eliminating the s-variables, we can think of f as some other
function z that depend only on d. So, we can write in a shorthand
notation:

Os

oz _of s | of s *
od “0s od od  Where %z_[vshT(X JRANCY

T
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Check the matrix sizes

V A =V fT(x)As +V, T (x)Ad

1Xn nXI1 1Xm m X1 1X(mn-m) (n-m)x1

= {—vsf TV ()] VT (x)+V, ST (x*)} Ad’
1Xm mXm m X (n-m) 1 X (n-m) (n-m) X 1

As'=[V ' (x)] V' (x)Ad

m X1 m Xm mX(n—m) (n—m)Xl



Second-order derivative (Hessian) of fin
the constrained space

%T_afT aS +iT
od o0s od od

By differentiating the above first derivative, we get the second
derivatlve

dz _d|of ds| dlof
i dd| as 4d | 4d|od

:afT d (d§]+ (aﬁ}d%azh O f ds
ds dd\dd ) dd| ds |dd od*> oddosdd
T Y
_of dzs+ds 82f ds o°f ds 82f+ o’ f ds
ds dd® dd asad_r_cj_d ds’ dd od*> odosdd
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Hessian of f in the constrained space

(contd.)

Pz df d’s ds 0°f ds 9°fds O'f Of ds
= + + +——+

dd®>  9s dd>

d’z
dd?

In the above expression, we know how to compute all quantities except

This, we will compute in the same way as we did for
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= <

o f

o f

od> odods
azf' azf'
| 9sad 08’

dd dsod dd 0s* dd od’

ddos dd

of &
| O 4’
os dd’

cfs‘
dd’

,i.e., using h=0.

ds

dd
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Hessian of the constraints in the
constrained space

h=0 Requires that the second-order perturbation of the m constraints
also be to be zero for feasibility. Therefore...

r | on on |, 1
dzh :4 0 @T > adZ adas 4 as - ah dzs -0
dd’ dd o°h  o°h 8_d os dd’
. odsod  0s° | ’
- -1 | o°h 9°h |y )
d2 ahT T 7 I
as__|9n 0 ds || od® odds |} o L,
dd-’ 0 3 o°h  9°h —
L dd od

dsod 9t |
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From Slides 10 and 11...

| L er o
2 T
2 | et U aa ados || oL,
dd \ ad | af Jd°f °d
2 L )
| dsdd  0ds” |
p _ _
1o a1y | oh 9°h | [ L)
R I . R I ds' || od> adas || o |
ds Js ad ’h  o’h d
\ ] ] i dsod aSZ _\ ))

T -1
Recall from Slide 15 in Lecture 3 that _ 9f {ah} 9
Jds | ds



And now, the complete Hessian in the
constrained space...

_ _ The long
) | 9L 9L |¢ 3 expression of the
%z Js T 34> odos I last slide reduces
14> =1 — 2L L 1 ds ¢ to this because of
\ dd . od the way we had
| dsod  ds” | ) defined the
Lagrangian, L.

Where L= f+\h

This is the sufficient condition for the

2
Ad™! d’z Ad >0 <:| constrained minimum.
dd’ Note that the perturbations are only

in the independent d variables.
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Sufficient condition for a constrained
minimum

2 2 2
AdT [d JAd AdTa—Ad cadT 0L ds gy

dd’ 8d ddds dd
2 T 2
AT ds aLAd*+Ad*T ds | d°L| ds Ad > 0
dd | dsod dd )] 9s”| dd
ds ds ' -
Note: EAd =As and Ad (dd) = AS Therefore, we get:
2 2 2
AdT| L2 | Ad = AdTa—Ad +Ad™’ oL As +
dd? od? dd ds
2 2
As ' oL Ad +As’ a—As > ()
dsod 0s”
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Sufficient condition for a constrained
minimum
2L L

0°L 0°L

AdT—=Ad +Ad"’ As +As’ Ad +As’' —As > 0
od* od ds dsod s’
0°’L  9°L
{ a5 ad || o ados { AS } 0
0°’L  9°L Ad
| dsad 05> _ o

= AxT HXx)AX > 0 wih  VhAX =0

Where AX = As )
Ad
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How do we check this easily?
Ax ' H(x )Ax > 0 with VhAx = 0

Note that this is a less stringent sufficient condition than
requiring the positive definiteness of the Hessian, at the
minimum point.

We want positive definiteness only in the subspace formed

by teasible perturbations in the neighborhood of the
minimum.

So, requiring positive definiteness of the Hessian is an
“overkill”!

But how do we check this restricted positive definiteness?
Next slide...
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Bordered Hessian

Ax Hx)Ax > 0 with VhAx = 0

The above condition is satisfied if the last (n-m)
principal minors of the bordered Hessian, H, (defined
below) have the sign (-1)™.

e .Vh(n;n; 4 H(L),

nXx

Bordered Hessian is simply Hessian of the Lagrangian bordered by the gradients of
equality and active inequality constraints.

ME 260 / G. K. Ananthasuresh, IISc Structural Optimization: Size, Shape, and Topology 18



Bordered Hessian check

0 Vh(x’ )

H "\ — mxm
S Yoy, IO,

Last principal minor Last-but-one principal minor Last-but-two principal minor



Example

Min f=x +x>+x x +2x°
Y ox oy 1 2 2 3 3
1772773

Subject to
h=0.5(x; +x;+x)-0.5=0

L=f+Ah=x +x +xx +2x +/1{0.5(x12 +x; +x§)—0.5}

(" A

1+lx1 ( 0 \
VL =+ 2x2+x3+/'tx2 = 8 (

X +4x + Ax \
T2 3 3

x=1Lx =0,x,=0; A =-1 isasolution. Let us check the sufficiency.



Example (contd.)

A 0 0 -1 0 O
H=l 0 242 1 [=| 0 1 1

0 1 4+ A 0 1 3
Elgenvalues of H are: -1. OOOO 0.5858, and 3 4142 Not positive definite!

0 1 0 0 0 1 0 O]
ot a0 0|1 a0
Hessian: 0 0 2+4 1 0O 0 1 1
_O 0 1 4+ /1_ _O 0 1 3_

n-m=3-1=2; So, last two principal minors should have the sign of (-1)” = -1. That is

they should be negative.
Last principal minor = -2; it is fine.
Last-but-one principal minor = -1; it is also fine. So, we have a minimum.
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The concept of optimization search
algorithms

Optimization search algorithms work like you would walk blindfolded
in a rough terrain!

They are iterative. They move from one point to another and eventually
converge to a minimum at which KKT conditions are satisfied.

They need an initial guess.
Various algorithms differ in the way they choose a search direction.

Once the search direction is chosen, the algorithms needs one-variable
search to decide how much to move in that direction. This is called the
line search.

<«— [teration number
FHD — 3 () o (g k) tena
\ Search direction

Updated variable Line search/'parameter



The end note

Recap of KKT conditions

Feasible perturbation
2nd order term in Taylor series expansion of an n-variable function with
constraints

Constrained subspace; Sufficient conditions for constrained minimization
Positive definiteness of the Hessian within the constrained subspace

Sufficient conditions for
Constrained finite-variable optimization

Constrained positive definiteness using
bordered Hessian

The concept of search algorithms
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