Shape derivative of a domain integral

We want to differentiate a domain integral with respect to a parameter that changes the
domain itself, i.e., the parameter changes the shape of the domain. This is tricky when the
quantities in the integrand of the domain integral are expressed in terms of the current
domain. In the parlance of mechanics, we refer to the original domain as “material”
domain and denote it by Q; and the current domain as “spatial” domain and denote it

by Q. So, if we take a derivative of a quantity expressed in terms of original domain

variable, we call it a material derivative and denote it with an over-dot as in f = @
p
On the other hand, we use a prime for the spatial derivative as in f'= M There is a

dp

relation between the material and spatial derivatives: f =f'+Vf-V where
%
p
dx ay . ‘" by 77 ‘" M b 77

V=V Q=—= ap( 8 the “shape velocity” or “design velocity” .
2/
op

Why isf:f'+Vf-V true?

Note that f = df &Y d f'= ALY

dp
Generally, f is given or is known in terms of the spatial coordinates, which in turn
depend on the material coordinates. Therefore,

df(x,p) I (X.p). dX

f— {f() p}= 0 ox

=f'+Vf-V

Sometimes, we use the shorthand notation for the second term in the preceding
equation: Vf -V = £ .

With this background, we want to compute:

jfdQ:%deQ] (1)

when a parameter changes the domain from Q, to Q where f is the integrand of the

domain integral of a performance measure that depends on the state variable and its
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derivatives. Notice that we used an over-dot here to indicate that we are taking a material
derivative.

Note that we are taking the derivative w.r.t. to a parameter p of an integral where
the integrand is integrated over the spatial domain, Q. Since the spatial domain changes
with the parameter, we cannot interchange differentiation and integration in Eq. (1). This
is the tricky part. To overcome this difficulty, we change it to the material (original)
domain, Q, first, and then interchange the order of differentiation and integration.

Step 1:

Q

d d d

— dQ |=— X, p)IX p)dQ, |=| — (X, p)[J(X, dQ 2

dp(if J dpuof( P, p) ] jdp{f( P, p)}dQ, 2
where J is the Jacobian of transformation from the material (original) domain to spatial
(current) domain as in dx =JdX or dQQ= |J| dQ,.

Now, we expand the integrand by differentiating using the product rule (Step 2)
and then change the domain back to the spatial (current) domain (Step 3) to get

Step 2: | p{ (X, p) J(X, p)|}d©, = j f|J| dQ, = j[ ]+ f|J|]dQ (3a)
Step 3: j[}|J|+f|.?|JdQO =j[f|J|+fm]ﬁdQ (3b)

By noting that 3= J|(V-V), we can simplify the preceding equation as
y g puty p geq
i(jfdgz]:j{ |J|+f|J|] dQ = j{ 3+ 7 P(V-V } Lo
dp 3, o 9] 9] @
d .
= — dQ |= + (V-V);dQ
dp(if J i{f 4 )}

By recalling that f = f'+Vf-V,wehave

%[ifd(lj:i{erf(V-V)}dQ:gj;{f'+Vf-V+f(V-V)}dQ

:%(Z[fd(!j £f+V aQ

()
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The result in Eq. (5) is known as the Reynolds Transport theorem if the parameter p is

interpreted as time. By using the divergence theorem, this theorem can also be written in
its partial boundary form (Step 4) as follows.

%de@j:I{f'+V-(jV)}dQ:If'dQ+J.f(V-n)dF (6)

As it happens in structural and multidisciplinary optimization, when f depends
on state variable(s) that are governed by differential equations, the integrand of the first
term of the last result in the preceding equation cannot be obtained analytically. Finite
difference derivative will be computationally expensive and defeats the purpose of
analytical sensitivity calculation. So, we need to reduce the first term in Eq. (6) to
something that does not involve any derivative of the state variable. We consider that
situation with a 1D example first and then generalize it for the diffusion and elasticity
equations in 2D and 3D. Before we do that, we should talk briefly about the material
derivative of a boundary integral as well. This is because our derivation of the material
derivative of a domain integral needs some new results that we discuss next.

Material derivative of a boundary integral

Let us consider

p=[rdr (7a)
r
where T is the boundary of Q. We repeat what we did for the material derivative of a
domain integral: change to the material domain (Step 1); interchange the order of

differentiation and integration; differentiate the integrand (Step 2); and change back to
the spatial domain (Step 3).

qszﬂ J ) dro} )

b L), f Pl a] o

Ty

R e
Ty

By noting that|?| = |J|V~V and ”J"Tn()” =—(VVn-n)||J‘Tn0 , We can write
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b= _[{f +f(V~V—VVn-n)} 3] 5", | 4T,

Iy

= I{f +f(v.V—VVn~n)}dF [ J|[9"n, | 4T, =dr] (7¢)

r

—
Derivation of ”J o n0|| using indicial notation

pmd = b ml) = L (5 m ) [ ] = (97 m) ]
1 d
= 2(Jj Tnoj XJU_‘Tno )1/2 E(Jj Tnoj XJ,-j Tno )
-T
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=—(VVnen) ”J’Tn()” [ neAn =A'ne n]

—
= ”J"Tn0 ” =—(VVnen) ”J‘Tn0 ”

Since only the normal component of the boundary needs to be considered while taking
the derivative, we can replace V with V =V n. With some manipulation shown in the

box, we get the compact final result:
b= j{f +fz<Vn}dr ®)
r

where V-n =k, the curvature.

If V=Vn then

VV =V(/,n) =n®VV, +V,Vn

(VV')n=(V¥,®n)n+7,(Vn) n| BurasV(nen) =0 =(Vn) n=0]
(VV')n=(VV,®n)n

(VV')n=(nn) V¥,
(VV' )n=v7,

Now consider the 2 expression in Eq. (35d). Then,
(VeV-VVnen)=Ve(V,n)-ne{(VV)'n| [ neAn=A'nen]
Using relation for(VV” )n above Eq. reduces to
(VeV-VVnen)=Ve(Vn)neVV,

=VV,en+V,Ven-neV/,

= (VeV-VVnen)=V Ven

= (VeV—-VVnen) =V x [where Ven =]

Now, let us look at the material derivative of the domain integral in 1D and solve
it using four different methods, as we had done for parameter sensitivity.
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Example 1

2

l
Compute %[ J pu dxj at / = L where the state variable u(x) is governed by E. fl zl
0 x

. . d
with the boundary conditions, « _, =0and d_u =0. Note that we want to compute the
X x=L

derivative of the mean compliance (work done by the external force) of an axially loaded
bar with respect to the changed domain in one dimension. It is a 1D problem considered
to understand the concept easily. Here, we are considering the case where the length of
the bar is changed as shown in Fig. 1. We want to compute the derivative w.r.t. the length
of the bar itself.

X
= Q
%—»—»—»—»—»—»—»—»—»—»—»—l}
Z
7
I L NI
S 2t
X
—> p Q

—>—>—>—>—>—>—>—>—>—>—>—>—>|

ERRERARARS

L [ |
I~ |

Fig. 1. A simple 1D problem of an axially loaded bar where the domain is elongated, not
because of deformation but because of change of shape (or size here) of the domain.

Solution

Method A (direct closed-form)

2

The solution of EA%+ p =0 with the boundary conditions, u _, =0and % =0 is
X Xlx=L

given by u = —ﬂ 1;4 Therefore, we have

2E4
d | px plx
d + dx =
Up” xj dl{jp[ 2EA EA) x}
A L PN _dfpt) _pE o pL
di\\EA\ 6 2)[ di\3E4) EA = E4

Method B (roundabout closed-form)

©)

This will look like a roundabout method as this is a simple example, but it will prove to
be useful for problems where the state variable can only be solved numerically.
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In this method, we first change from the spatial to material domain. This allows us
to interchange the order of differentiation and integration. Then, we change the domain
back to spatial coordinates for further manipulation.

1 L L
L puds | =2[ [ puax |- i(puﬁj IX
di\ 3 di\ 3" dx Nar\" ax

d dx \| dX
{E(puﬁ)}gdx (10)

We notice that

dfde|_d(dc)_dV _dV dc (11a)
di\ dX dx \ dl dX dx dX
i G e am

dl ol dedl ol dx

The preceding step may be seen as the 1D equivalent of f = f"+Vf-V used in Eq. (5).
Now, Egs. (9a-b) into Eq. (8) lead to

d ¢ (dude d{dx)|dX

— J.pudx =Ip ———tu—| — |[—dx

dl\ 5 0 dl dX di\dX )| dx
ou du dx dV dx \| dX

Pl —+—V |—+u| —— |}—dx
ol dx dX dx dX )| dx

f
:i‘p{(g—?+%l/j+ué—:}dx:j.p{(%+%(uV)j}dx
J’. I

(12)

0

i(j.pu xj = j.p%x—kp(uV)K)
0

/ 2]2 12 ZZ 2[2 2L2 (13)
:Ip(—pxjdx+pux_l=p +p LY L L 4
o \EA 2FEA 2EA EA EA EA
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The last line of the preceding equation needs explanation for the boundary term. First,

we note that both v and V are zero atx:0.Atx:l,V=%=l.

So, we got the same answer in Eq. (13) that we got in Eq. (9). But what if we pretend
that we do not know the analytical solution for u(x) that satisfies the differential equation

and the boundary conditions? Then, we will be stuck with the end result of Eq. (12). We
will continue from there in what follows, first by using the adjoint method (which avoids

computingg—b;) and the direct method (which solves the sensitivity equation to solve for
ou

o

Method 1 (adjoint method)

In the adjoint method, we add the governing equation multiplied by A(x) to the domain

integral whose sensitivity we want to find, and then differentiate it. This, although may
seem like a clever trick, is perfectly logical because we are only adding something that is
identically zero. In fact, it is logical if we think in terms of the Lagrangian used in
optimization where we add Lagrange multiplier times the constraint expression.

Step 1 (add the governing equation multiplied by 4.

ot e 5] o

By doing integration by parts for the second term of Eq. (14), we write:
l [
dv _Jd jpudx 2 (/lEAduj 4 j(—EAﬁ@mdex (15)
dl - |di dl dx dl | dx dx

Step 2 (Reynolds Transport Theorem)
By applying the Reynolds Transport Theorem (RTP) to the first term of the preceding
equation, we get

ad]l(J.pu de = I{pu'+%(puV)}dx = !pu’dx-i—(puV)K) (16a)

du . . N
where u' = 73‘ is the spatial derivative.

By applying the Reynolds Transport Theorem to the third term of Eq. (15), we have

Jj( EAﬁﬂ p}zx j( WL jdx+( A%y j
dx dx 0 dx dx dx dx

i

(16b)
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Now, we expand the first term of the preceding equation by taking spatial derivative to

get
] !
4 I(—EAﬁﬂ+ﬂpj dx
dl dx dx

0

(16¢)
/ ' ' !
= J.(—EAﬁﬂ—EAﬁdl+/I’pjdx+[—EAﬂd—uV+/lij
) dx dx dx dx dx dx 0
We also expand the second term of Eq. (15).
!
d du didu d(iruj
< (ﬂEA—uj - (E ——”j +| EA—22
dl dx )|, dl dx ), dl
(16d)
0
1 ANy
- (EAi’ﬂj + (EA/I du j
dx )|, dx )|,
Now, by adding terms in Egs. (16a), (16c), and (16d), we get
! ! , /
dy _ jpu'dx+(puV)|l +(EA/1’d_uJ +(EA/1d_”j
da 0 dx )|, dx )|,
o . did dA du’ di d ’ W
+j(—EA—l—EA—l+/1’pjdx+(—EA—lV+/1ij
0 dx dx dx dx dx dx 0
Step 3 (Re-grouping terms to simplify by analogy with the weak form)
Note that the weak form of the governing equation.
d’u 0 d’u
EA—+p=0= || EA—+p |vdx=0
dx’ P ;[[ dx’ pj
dul ¢ dvd o)
= EAv —I(EA—v—u—pvjdx =0
dx|, dx dx

where v is the weak variable and p is the load. We solve for u using this equation.

By considering the preceding equation, we re-group the terms of Eq. (17):
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(—EAﬁlerpu'jdx +
dx dx

{ (—EAﬁ@ + /I'pj dx + (EAﬁ'd—uj
0

dx dx dx

}+ (19)

1
! du'
(puV)|0 + (EAxl _d j

X

dx dx .

l
+(—EAQQV+/1ij
0

/

The first bracketed expression is replaced with EAu'ﬂ by virtue of the weak form with

dx

0

u' as the weak variable to get

!
v _ EAM’Q +
dl dx |,

X
/ i
J'(—EAﬁﬂ+ l'pjdx + (EAZ'd—uj
d dx dx dx

} + (20)

1

dx dx

l
+(—EAﬁﬂV+/1ij
X 0

! du'
(puV)|0 + (EAJ, d_j

0

The second bracketed expression is zero as it is the weak form of the governing equation
with A" as the weak variable. Then, we are left with the following terms:

/ li

JrEAu’ﬁ
dx

du'

dx

(21)

dy !
W:(pr,[V)|0+EA;L

0

/
+£—EAQQV+M)VJ
dx d

0 x dx

0

Notice that all the terms on the right hand side of the preceding equation are to be

evaluated at only the boundary. In this example, since we take A = u as the first bracketed
!

expression in Eq. (19) actually means that with E4u'—/ added.

dx

0

Now, let us evaluate each term in Eq. (21) assuming the fixed-free bar conditions.

d.
(puV)K) = pu, because U, =0 and ¥, =7); =1 (22a)
1
'1 !/
EAud—u =0 because #,=0 and au =i(d—u] =0 (22b)
dx |, dx|, dl\dx),
!
dA du du du
—EA——V +upV || =| —EA——V +upV | = pu 22
( e p]o [ Tr dx pjl pu, (22¢)
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d d.
because V; = Oand( uj =0,~Vl=—x =1.
dx )|, dl|,
EAu 'd/l =0 because /| » _dul 0 as wu is specified there; and
dx |, odl
aa _du =0. (22d)
dx x=l dx x=1
Thus, we finally get
d L 212 szz
dx |=2 = 23
dlUp” xj P = Ed T B4 29)

which is the same result we got earlier in Egs. (9) and (13).

The adjoint method proved to be somewhat tedious in this example. But it is
actually the most convenient in practice as we can reduce the material derivative to the
computation of the boundary terms after solving the adjoint equation. The three steps
need to be kept in mind as we consider other examples.

Method 2 (direct method)

We begin with — Upu de = J.p{[%—i—i(z/ﬂ/)j}dx- In order to compute% =u', which

dl  dx

we avoid in the adjoint method, we use the governing differential equation and
differentiate it with respect to the parameter to get the sensitivity equation. That is,

2 2 2
DN pg | pad] 4 :EAd—Z(d—”jz
dai\" ax di | dx dax* \ dl
:{%j:qu;

0
Since U, is specified, (a—b;j =0=C, =0 in the preceding equation. Since we know
x=0

(24)

__pPx p—lx we find that C :L. By substitutin (ﬂj=ix into
W) == Ea Y & \al ) E4

:;l (j.l?u de = J.p{(aa—l;+%(ulf)j}dx, we get
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(25)

] (5 e

p ZZ p2[2 ~ plz pIZ B p212 p2L2
pux ;= +p + = or
2EA 2EA 2EA EA EA EA

Note that in the last step of the preceding equation, we have used the analytical
expression for u._, even though we pretended that we did not know the analytical

solution. We did this only to show that we get the same correct answer with this method.
In practice, we will simply substitute the numerical solution that we already know in
order to compute the numerical value of the domain-parameter sensitivity.

Example 2
d 1
Compute —| |u°
e il
d
with the boundary conditions, #,_, =0and d—u =0. Use the adjoint method.
X x=L
Solution

In this simple problem, we can get the solution in closed-form. Let us do it so that it will
serve the purpose of verifying the solution obtained with the step-wise procedure of the
adjoint method.

Closed-form solution:

Since we know y = fﬁ pix , we get
d| o, d|of-p  plx ’ 2p%*
— dx |=— t— | dx|=—F— 26
dl H ) x} dl h ( 264 EA) | T3EA #0)

We follow the three steps of the adjoint method as we did in Example 1.

Step 1 (add the governing equation multiplied by 4.

sl szt o )]

By doing integration by parts for the second term of Eq. (27), we write:

dy d du d | dJ du |
¥ {dlU dx]}+5{(}tEAde }+a’l{j( EAdde+/1pjde (28)

0
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Step 2 (Reynolds Transport Theorem)

By applying the Reynolds Transport Theorem (RTP) to the first term of the preceding
equation, we get

%Uuz dx] =j2uu'dx+(u2V)‘; (29a)
0 0

where u' = % is the spatial derivative.

By applying the Reynolds Transport Theorem to the third term of Eq. (28), we have

/ L !
L J(—EAdlﬂ+ﬂpjdx =j(—EAﬂ@+zp] dx+(—EAﬁd—”V+ﬂij
dl |4 dx dx 0 dx dx dx dx

i

(29b)

Now, we expand the first term of the preceding equation by taking spatial derivative to

get
i ’
4 I(—EAﬂﬂ+ﬂpJ dx
dl dx dx

0

l ' ’
=j(—EAﬁﬂ—EAﬁdLM'pjdH(—EAﬁ@V+/1ij
0

(29¢)

i

dx dx dx dx dx dx

0

We also expand the second term of Eq. (27).

! 1 d(duj
Ll (ﬂEAd—uj :(EAﬁﬂj +| Bap—)
dl dx ), dl dx dl
-(arse)
dx

’ (29d)
Now, by adding terms in Egs. (29a), (29¢), and (29d), we get

0
l d ,
+ (EAZ —“j
0 dx

i

/

dx

l !
+ (EA/I du j
0

0

1
d_g// = j.Zuu' dx + (qu)r + (EA/i'd—uj
7/ 0 dx

’ (30)

i

/ ’ [
+j(—EAﬁ@—EAﬁdLM’deH(—EAﬁﬂVMij
0 dx dx dx dx dx dx

0

Step 3 (Re-grouping terms to simplify by analogy with the weak form)
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! '
v _ I(—EAﬁdi+2uu'jdx +
dl 0 dx dx
[ ] i
| (—EAﬁ@Jr/I'pjdx+(EA/1'd—uj + (31)
0 dx dx dx )|,

/

—

qu)|1 +(EAﬂ,d—wj
0 dx

dx dx

i
+(—EAﬁﬂV+iij
0

0
Now, by virtue of the weak form with u’ as the weak variable, we can solve for A(x)

i
using the first bracketed expression after adding its boundary conditions (EAu'ﬁ ,
Xlo

which is assumed to be zero). The second bracketed expression is zero as it is the weak

form of the governing equation with A" as the weak variable. Then, we are left with the
following terms:

i / i

+EAu'ﬂ

dx

av :(qu)|’ cE (32)

dl 0 dx

+(—EAQQV+ﬂpV]
dx dx

0 0 0

Notice that all the terms on the right hand side of the preceding equation are to be
evaluated only at the boundary. Now, let us evaluate each term in Eq. (32) assuming a
fixed-free bar.

! d.
(qu)‘O =u, because #,=0 and ¥, =2 (33a)
!
1|l ' d
EAL )~ 42| because (_uj =0 (33b)
dx |, dx |, dx )|,
I
dA du du dx
(_EAEEV—FEPVJO = pA, because V; =0 and[;}l =07, :Z; =1. (33c)
/
EAu'd—/1 =0 because u'| " _du 0 as u is specified there; and al 0. (33d)
dx |, =odl dx |,
Thus, we finally get
d|; du'
E|:-([{M2}dxi|=ulz+//i,EAEO+pl|l (34)
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Here, we note that assuming 4_, =0 is useful as u (state variable) and A (adjoint
variable) often have the same boundary conditions. For the purpose of verification, we

2 4
pl and 4 - 5pl )
E = 12E*A?

d / 5 5 p214 5p214 2p2l4
E|:J‘{u }dx:| :ux=l +(ﬂ'p)x=1 :(4E2A2 + 12E2A2 = 3E2A2

0

note that 4 _, = and get the final answer:

Now by comparing with the closed-form solution given in Eq. (26), we find that we got
the same result by adjoint method. The nice thing about the adjoint method is that the
material derivative depends only on the boundary quantities.

Example 3

1
Compute %( J' f (u,j—u)dx] at /=L where the state variable u(x) is governed by
0 X

2 du

£ L;+ p =0 with the boundary conditions, u,_, =0andd— =0. Use the adjoint
X Xle=L

method.

Solution (steps left as an exercise)

This example is identical to the last two examples except that the functional is different.
In the equation used to solve for A(x), in Example 1, the adjoint load was p; that in
Example 2 was 2u . If notice, the adjoint load is simply the derivative of the integrand of
the functional w.r.t. to the state variable. So, in this third example, the adjoint load will

be g_o)_d . And there will be one more boundary term.

ou  ox a(du dx)

Now, it becomes clear that computing the material derivative of a domain integral
entails solving the adjoint equation and then evaluating the terms only at the boundary.
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