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If you have an 
analysis program, 
you are only a small 
step away from
writing a topology 
optimization 
program.

2



Structural Optimization: Size, Shape, and TopologyG. K. Ananthasuresh, IISc

What to solve and what to solve 
for in topology optimization 
problems?

What to solve: Partial Differential Equations (PDEs)
◦ Governing equation(s)
◦ Adjoint equation(s)
◦ Design equation(s)

What to solve for: 
◦ State variables
◦ Adjoint variables
◦ Lagrange multipliers
◦ Design variables

What to ensure:
◦ Constraint(s) should be satisfied.
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Four methods for solving topology 
optimization problems

Optimality Criteria (OC) method

Mathematical Programming (MP) methods
◦Black-box approach (mostly)

Convex Approximation methods
◦ConLin
◦MMA

Topology-derivative-based level-set method
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Optimality Criteria 
(OC) method
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Simplest structural optimization 
problem
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Maximize the stiffness for given volume of material of a bar.
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General structure of a structural 
optimization problem
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Optimize Objective function

Subject to
Governing equation(s)

Resource constraint(s)
Performance constraints

Data

(It depends on design variables 
and state variables.)

w.r.t. design 
variables

(They govern state variables.)

They create conflict in 
optimizing the objective 
function.

A simple problem

(This should be properly chosen although the 
nature of the solution is not decided by the 
data.)
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Steps in the solution procedure
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Step 1: Write the Lagrangian.

Step 2: Take variation of the Lagrangian w.r.t. the design variable and 
equate to zero to get the design equation.

Step 3: Take variation of the Lagrangian w.r.t. state variable(s) and 
equate to zero to get the adjoint equation.

Step 4: Collect all the equations, including the governing equation(s), 
complementarity condition(s), resource constraints, etc.

Step 5: Obtain the optimality criterion by substituting adjoint and 
equilibrium equations into the design equation, when it is possible.

Step 6: Identify all boundary conditions.

Step 7: Solve the equations analytically as much as possible.

Step 8: Use the optimality criteria method to solve the equations 
numerically.
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Step 1
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Step 1: Write the Lagrangian
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Integrand in the Lagrangian functional
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Step 2
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Step 2: Take variation of the Lagrangian w.r.t. the design variable and 
equate to zero to get the design equation.
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Design equation

Sensitivity 
(derivative) of 
the objective 
function

What multiplies the 
Lagrange multiplier 
is the sensitivity of 
the corresponding 
constraint. Here, it is 
positive or negative 
unity for all three.
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Step 3
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Step 3: Take variation of the Lagrangian w.r.t. state variable(s) and equate 
to zero to get the adjoint equation.
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Adjoint (equilibrium) equation

Adjoint load; 
here it is equal to 
the actual load 
because the 
objective 
function is mean 
compliance.

No change here 
as compared to 
Problem 1.
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Step 4
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Step 4: Collect all the equations, including the governing equation(s), 
complementarity condition(s), resource constraints, etc.
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Design equation

Adjoint (equilibrium) equation

Equilibrium (governing) equation

Complementarity conditions

Feasibility conditions
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Step 5
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Step 5: Obtain the optimality criterion by substituting adjoint and 
equilibrium equations into the design equation, when it is possible.

( ) 0p EAu ′′+ =
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uλ =

2 0u l Euµ µ ′Λ + − − =

These are functions of x; so, the strain 
energy density is not necessarily 
constant throughout.

Optimality criterion0u l E uµ µ λ′ ′Λ + − − =
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Step 6
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Step 6: Identify all boundary conditions.
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Step 7
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Step 7: Solve the equations analytically as much as possible.

We have three cases now.

2 0u l Euµ µ ′Λ + − − =
Optimality criterion

0, 0u l uA Aµ µ> = ⇒ =

0, 0l u lA Aµ µ> = ⇒ =

0, 0l uµ µ= = ⇒

Case 1:

Case 2:

Case 3: We have dealt with this in Problem 1.

Area of cross-section is thus known.

Area of cross-section is thus known.

We need to partition the domain (0,L) into these three cases. We do this numerically 
using the optimality criteria method.
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Partitioning the domain into three types
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uA A= lA A= lA A=uA A=
2
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This is how we update when A(x)
is in between the bounds.

While we partition the domain, we should ensure that the volume 
constraint is satisfied.

As per the optimality criterion

0x = x L=

uµ lµ

Notice how Lagrange multipliers of the area-
limits constraints vary.
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Calculate the Lagrange multiplier
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Step 8
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Step 8: Use the optimality criteria method to solve the equations 
numerically.

(i) Choose 0 ( )A x as the initial guess.

This is the step-wise procedure of the optimality criteria method.
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(iii) Evaluate *
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(v) Update 1( )kA x+ until convergence, i.e., until 1( ) ( )k kA x A x+ − ≤

(ii) 

(iv) Ensure that everywhere  

tolerance.

;u lA A A A≤ ≤

This to is iterative; we call it the inner 
iterative loop. This is where we partition 
the domain into three types.
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Outer and inner loop iterations
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Begin the outer loop with 0 ( )A x

Compute

( )kA x( ){ }2
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Update

Check against bounds: 1 1( ) , ( )k u k uIf A x A A x A+ +> = Add that x to uΩ

1 1( ) , ( )k l k lIf A x A A x A+ +< = Add that x to lΩ

Now, recalculate Λ As show in the next slide.

Inner loop begins here.
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Inner loop (contd.)
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Update again

Check against bounds 
again

1 1( ) , ( )k u k uIf A x A A x A+ +> = update

1 1( ) , ( )k l k lIf A x A A x A+ +< = update

Now, recalculate 

uΩ

lΩ

Λ

Repeat this until partitioning does not change.
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Optimality criteria method
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Updating Lambda and 
partitioning of the domain  is the 
inner loop.
Note that area of cross-section 
gets update in the inner loop 
also.
This ends when partitioning does 
not change anymore.

Updating area of cross-section is the 
outer loop using the optimality 
criterion.

The outer loop ends when the design 
variable over the entire domain does 
not change anymore.
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Check out the BarOpt Matlab code.
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BarOpt has four files:
baropt.m >> implements optimality criteria method.
fembar.m >> finite element code for bar elements.
matcut.m and veccut.m >> These are used by fembar.m
baropt.m may be modified by you to change the data 
such as the length of the bar, loading, displacement 
boundary conditions, the number of elements in the bar, 
total number of iterations, the tolerance to stop the 
iterative process, etc.

A representative result of 
optimized area of cross-
section.
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What to solve and what to solve 
for in topology optimization 
problems?

What to solve: Partial Differential Equations (PDEs)
◦ Governing equation(s)
◦ Adjoint equation(s)
◦ Design equation(s)

What to solve for: 
◦ State variables
◦ Adjoint variables
◦ Lagrange multipliers
◦ Design variables

What to ensure:
◦ Constraint(s) should be satisfied.
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Now, match the following!

1. Governing equation(s)

2. Adjoint equation(s)

3. Design equation(s)

4. Constraint equation(s)

24

A. State variable(s)
B. Adjoint variable(s)
C. Design variable(s)
D. Lagrange multiplier(s)

1. Governing equation(s)
2. Adjoint equation(s)
3. Design equation(s)
4. Constraint equation(s)

A. Lagrange multiplier(s)
B. Adjoint variable(s)
C. State variable(s)
D. Design variable(s)

Answer (correct matching)
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How do you solve?
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1. Governing equation(s)
2. Adjoint equation(s)
3. Design equation(s)
4. Constraint equation(s)

A. FEA, CFD, etc.
B. FEA, CFD, etc.
C. Outer loop
D. Inner loop



Mathematical 
Programming (MP) 
methods

26
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Mathematical programming 
algorithms

•Zeroth order methods
•First order methods
•Second order methods

Unconstrained 
minimization

•Sequential unconstrained 
methods

•Sequential approximation 
methods

Constrained 
minimization

27



•Zeroth order 
methods

•First order 
methods

•Second order 
methods

Unconstrained 
minimization

•Univariate 
method

•Pattern search 
methods

•Simplex method
•Nelder-Mead 

method

Zeroth 
order 

methods

• Hooke and Jeeves 
method

• Powell’s conjugate 
method

• Rosenbrock’s method

Pattern 
search 

methods
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•Zeroth order 
methods

•First order 
methods

•Second order 
methods

Unconstrained 
minimization

•Steepest 
descent method

•Fletcher-Reeves 
method

First 
order 

methods
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•Zeroth order 
methods

•First order 
methods

•Second order 
methods

Unconstrained 
minimization

• Newton 
method

• Variable 
metric 
methods

Second 
order 

methods

• DFP (Davidon-
Fletcher-Powell) 
method

• BFGS (Broydon-
Fletcher-Goldfarb-
Shanno) method

Variable 
metric 

methods
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•Sequential 
unconstrained 
methods

•Sequential 
approximation 
methods

Constrained 
minimization

• EPF (Exterior Penalty Function) 
method

• IPF (Interior Penalty Function) 
method

• Extended IPF (EIPF)
• Augmented Lagrangian method

Sequential 
unconstrained 
minimization 

methods
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•Sequential 
unconstrained 
methods

•Sequential 
approximation 
methods

Constrained 
minimization

• SLP (Sequential Linear Programming)
• SQP (Sequential Quadratic Programming)
• Method of feasible directions
• Generalized Reduced Gradient (GRG) 

method
• Trust region method
• Convex approximation methods

Sequential 
approximation 

methods

Convex linearization (CONLIN)
Method of Moving Asymptotes (MMA)
Generalized Convex Approximation 
(GCA)

32



Structural Optimization: Size, Shape, and TopologyG. K. Ananthasuresh, IISc

The end note
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Convex linearization and level-set methods

Four classes of techniques

General statement of the problem revisited

Optimality criteria method

Mathematical programming methods
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